With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were s...With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were studied through collection of verified data in site visits and field tests.The result revealed that,electricity accounted for 99.79% of the total energy consumption,natural gas 0.17%,and diesel 0.04%.The air conditioning dominated the energy use with a share of 43.18%,equipment in the particular areas 26.90%,equipment in the office rooms 11.95%,lighting system 8.67%,general service system 7.57%,and miscellaneous items 1.73%.Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW-h/m2 and lower limit of 55.26 kW-h/m2.According to ASHRAE standard(comfortable standard) and GB/T 18883-2002(acceptable standard),the indoor environmental quality of 51 sampled office buildings was classified into three ranks:good,normal and bad.With benchmark of building energy consumption combined with indoor environmental quality,it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality,and the buildings classified into normal level accounted for the maximum ratio.展开更多
The day/night (diurnal) changes in temperature and solar radiation pose challenges for maintaining human thermal comfort in buildings. Passive and energy-conserving buildings seek to manage the available thermal ene...The day/night (diurnal) changes in temperature and solar radiation pose challenges for maintaining human thermal comfort in buildings. Passive and energy-conserving buildings seek to manage the available thermal energy by lowering peaks and dampening the fluctuations in order to maintain conditions for human comfort. Appropriate use of thermal mass moderates the internal temperatures by averaging diurnal extremes. Thermal mass is one of the powerful tools which architects and designers can use to control temperature. It can be used to optimize the performance of energy-conserving buildings that rely primarily on mechanical heating and cooling strategies. Massive building envelopes-such as masonry, concrete, earth, and insulating concrete forms (ICFs) can be utilized as one of the simplest ways of reducing building heating and cooling loads. This article analyses the role and effectiveness of thermal mass as a strategy for providing indoor thermal comfort for passive solar and energy conserving buildings.展开更多
In this paper the possibilities for avoiding active air conditioning by all means of the room itself (window size, glazing, shading system, natural ventilation, and furniture), artificial light and control strategy ...In this paper the possibilities for avoiding active air conditioning by all means of the room itself (window size, glazing, shading system, natural ventilation, and furniture), artificial light and control strategy of these systems are investigated. A very important component of the system is the user with his ability to adapt to changing conditions in his surrounding and with his possibilities to manipulate the window, the shading system, the light switch etc. All these aspects interact together. It is necessary to optimize them simultaneously. But real planning often separates them into single sections. Simulation tools also handle normally only one or a few aspects, we know for example the thermal simulation or the daylight simulation. Primero-Comfort (2009) is a simulation tool based on energy+, what is able to consider thermal simulation as well as daylight simulation as well as user behaviour in regard to the probability of window openings. The resulting thermal comfort is rated by an adaptive comfort model, the Dutch ISSO 74 (2004). This allows designing office rooms more realistic. And it shows that an optimized solution has to include the interactions of aU mentioned aspects. Investigations with Primero-Comfort for a moderate European climate (Hamburg) show that a very good comfort can be reached only by passive means of building design also for hot summer weather just like the summer in the year 2003. The keys for such hot-summer-robust-buildings are night ventilation with height difference, heat protection glazing and good shading system, reduced internal heat gains for artificial light by accepting a threshold of 300 lx of daylight as comfortable and a reduced window size oriented on daylighting and the view out of the window.展开更多
Many kinds of factors that influence rural housing construction in Northern China are analyzed systematically and the connections between them are weighed from ecology and sustainable angles, so that an optimized gree...Many kinds of factors that influence rural housing construction in Northern China are analyzed systematically and the connections between them are weighed from ecology and sustainable angles, so that an optimized green house can be built. At the same time, the energy efficient envelope structure and the method of choosing insulation material in the cost of unit thermal resistance are proposed. Integrated quality evaluation by computer shows that thermal comfort in the house would be improved remarkably for the value of PPD drops from 35%-40% to 15%, the rate of saving energy is 51.73%, much higher than the third goal of saving energy in China, and the comprehensive ecological benefit achieves good effect so as to promote the sustainable development of rural housing and community in cold areas of Northern China.展开更多
Personal conditioning system(PCS)is receiving considerable attention due to its energy-saving potential and the ability to satisfy individual comfort requirements.As a part of PCS,personal heating systems can maintain...Personal conditioning system(PCS)is receiving considerable attention due to its energy-saving potential and the ability to satisfy individual comfort requirements.As a part of PCS,personal heating systems can maintain human thermal comfort in cold environments,which leads to their potential role of important heating mode in cold winter,especially in the Hot Summer and Cold Winter regions of China.In order to better promote the development and application of personal heating systems,this paper reviews the published studies.Personal heating systems can be divided into four types based on the mode of heat transfer:conductive,convective,radiative and combinative type.Characteristics of each category and respective devices are introduced.Furthermore,identifying the effects of personal heating on thermal comfort and the models for predicting or evaluating thermal comfort during local heating.This paper would provide users with a guideline for choosing suitable heating equipment during winter.展开更多
This paper presents an assessment of the spatial quality of a pedestrian street located in downtown Bauru, S^o Paulo State, Brazil, from the application of some urban sustainability indicators. Multi-method was used t...This paper presents an assessment of the spatial quality of a pedestrian street located in downtown Bauru, S^o Paulo State, Brazil, from the application of some urban sustainability indicators. Multi-method was used to evaluate the thermal comfort quality of users, urban accessibility and preservation of architectural heritage. The results show that the sustainability indicators, apart from being effective tools in identifying problems, can assist local managers in decision making, planning and monitoring of pedestrian public space. These indicators contribute to a broad diagnosis of the pedestrian street and also the formulation of programs, projects and municipal policies, aimed at providing a better life quality for pedestrians.展开更多
Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concer...Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concerns may include thermal environment, luminous environment and acoustics environment. Types of energy used are an important variable that contributes to thermal comfort. Physical structure of the school building is another factor to be taken into consideration. This article established a relationship between thermal comfort inside schools and types of energy flows which have been consumed to maintain the level of comfort required, controlled by the building fabric and consequent economic factors that affect energy consumption of school buildings. Different approaches were applied in order to achieve the research objectives. Field surveys, field measurements and analyzing historical data were the most approaches followed to implement this study. The final outputs of this work have a national value nationwide: establishing a relationship among thermal comfort, energy flows and building fabric is of importance. Furthermore, it is of great importance to the decision maker for educational facilities. Research will also establish a wide platform based on scientific investigations for developing climate responsive school architecture in Jordan.展开更多
基金Project(2011BAJ01B05) supported by the National Science and Technology Pillar Program during the Twelfth Five-year Plan Period of China
文摘With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were studied through collection of verified data in site visits and field tests.The result revealed that,electricity accounted for 99.79% of the total energy consumption,natural gas 0.17%,and diesel 0.04%.The air conditioning dominated the energy use with a share of 43.18%,equipment in the particular areas 26.90%,equipment in the office rooms 11.95%,lighting system 8.67%,general service system 7.57%,and miscellaneous items 1.73%.Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW-h/m2 and lower limit of 55.26 kW-h/m2.According to ASHRAE standard(comfortable standard) and GB/T 18883-2002(acceptable standard),the indoor environmental quality of 51 sampled office buildings was classified into three ranks:good,normal and bad.With benchmark of building energy consumption combined with indoor environmental quality,it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality,and the buildings classified into normal level accounted for the maximum ratio.
文摘The day/night (diurnal) changes in temperature and solar radiation pose challenges for maintaining human thermal comfort in buildings. Passive and energy-conserving buildings seek to manage the available thermal energy by lowering peaks and dampening the fluctuations in order to maintain conditions for human comfort. Appropriate use of thermal mass moderates the internal temperatures by averaging diurnal extremes. Thermal mass is one of the powerful tools which architects and designers can use to control temperature. It can be used to optimize the performance of energy-conserving buildings that rely primarily on mechanical heating and cooling strategies. Massive building envelopes-such as masonry, concrete, earth, and insulating concrete forms (ICFs) can be utilized as one of the simplest ways of reducing building heating and cooling loads. This article analyses the role and effectiveness of thermal mass as a strategy for providing indoor thermal comfort for passive solar and energy conserving buildings.
文摘In this paper the possibilities for avoiding active air conditioning by all means of the room itself (window size, glazing, shading system, natural ventilation, and furniture), artificial light and control strategy of these systems are investigated. A very important component of the system is the user with his ability to adapt to changing conditions in his surrounding and with his possibilities to manipulate the window, the shading system, the light switch etc. All these aspects interact together. It is necessary to optimize them simultaneously. But real planning often separates them into single sections. Simulation tools also handle normally only one or a few aspects, we know for example the thermal simulation or the daylight simulation. Primero-Comfort (2009) is a simulation tool based on energy+, what is able to consider thermal simulation as well as daylight simulation as well as user behaviour in regard to the probability of window openings. The resulting thermal comfort is rated by an adaptive comfort model, the Dutch ISSO 74 (2004). This allows designing office rooms more realistic. And it shows that an optimized solution has to include the interactions of aU mentioned aspects. Investigations with Primero-Comfort for a moderate European climate (Hamburg) show that a very good comfort can be reached only by passive means of building design also for hot summer weather just like the summer in the year 2003. The keys for such hot-summer-robust-buildings are night ventilation with height difference, heat protection glazing and good shading system, reduced internal heat gains for artificial light by accepting a threshold of 300 lx of daylight as comfortable and a reduced window size oriented on daylighting and the view out of the window.
文摘Many kinds of factors that influence rural housing construction in Northern China are analyzed systematically and the connections between them are weighed from ecology and sustainable angles, so that an optimized green house can be built. At the same time, the energy efficient envelope structure and the method of choosing insulation material in the cost of unit thermal resistance are proposed. Integrated quality evaluation by computer shows that thermal comfort in the house would be improved remarkably for the value of PPD drops from 35%-40% to 15%, the rate of saving energy is 51.73%, much higher than the third goal of saving energy in China, and the comprehensive ecological benefit achieves good effect so as to promote the sustainable development of rural housing and community in cold areas of Northern China.
基金Projects(51978661,51778625)supported by the National Natural Science Foundation of ChinaProject(ACSKL2018KT12)supported by State Key Laboratory of Air-conditioning Equipment and System Energy Conservation,China。
文摘Personal conditioning system(PCS)is receiving considerable attention due to its energy-saving potential and the ability to satisfy individual comfort requirements.As a part of PCS,personal heating systems can maintain human thermal comfort in cold environments,which leads to their potential role of important heating mode in cold winter,especially in the Hot Summer and Cold Winter regions of China.In order to better promote the development and application of personal heating systems,this paper reviews the published studies.Personal heating systems can be divided into four types based on the mode of heat transfer:conductive,convective,radiative and combinative type.Characteristics of each category and respective devices are introduced.Furthermore,identifying the effects of personal heating on thermal comfort and the models for predicting or evaluating thermal comfort during local heating.This paper would provide users with a guideline for choosing suitable heating equipment during winter.
文摘This paper presents an assessment of the spatial quality of a pedestrian street located in downtown Bauru, S^o Paulo State, Brazil, from the application of some urban sustainability indicators. Multi-method was used to evaluate the thermal comfort quality of users, urban accessibility and preservation of architectural heritage. The results show that the sustainability indicators, apart from being effective tools in identifying problems, can assist local managers in decision making, planning and monitoring of pedestrian public space. These indicators contribute to a broad diagnosis of the pedestrian street and also the formulation of programs, projects and municipal policies, aimed at providing a better life quality for pedestrians.
文摘Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concerns may include thermal environment, luminous environment and acoustics environment. Types of energy used are an important variable that contributes to thermal comfort. Physical structure of the school building is another factor to be taken into consideration. This article established a relationship between thermal comfort inside schools and types of energy flows which have been consumed to maintain the level of comfort required, controlled by the building fabric and consequent economic factors that affect energy consumption of school buildings. Different approaches were applied in order to achieve the research objectives. Field surveys, field measurements and analyzing historical data were the most approaches followed to implement this study. The final outputs of this work have a national value nationwide: establishing a relationship among thermal comfort, energy flows and building fabric is of importance. Furthermore, it is of great importance to the decision maker for educational facilities. Research will also establish a wide platform based on scientific investigations for developing climate responsive school architecture in Jordan.