Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Optimization of off-road vehicle suspension system is one of the most effective methods, which could c...Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Optimization of off-road vehicle suspension system is one of the most effective methods, which could considerably enhance the vehicle stability and controllability. In this work, a comprehensive optimization of an off-read vehicle suspension system model was carried out using software ADAMS. The geometric parameters of suspension system were optimized using genetic algorithm (GA) in a way that ride comfort, handling and stability of vehicle were improved. The results of optimized suspension system and variations of geometric parameters due to road roughness and different steering angles were presented in ADAMS and the results of optimized and conventional suspension systems during various driving maneuvers were compared. The simulation results indicate that the camber angle variations decrease by the optimized suspension system, resulting in improved handling and ride comfort characteristics.展开更多
This paper in the light of the structure parameters of the ramie fabric to research and evaluation it's heart-moisture comfort. Selected 15 kinds of ramie fabric to test the average density, the thickness, the tightn...This paper in the light of the structure parameters of the ramie fabric to research and evaluation it's heart-moisture comfort. Selected 15 kinds of ramie fabric to test the average density, the thickness, the tightness, the heat rate, the heat transfer coefficient, the Clo, the air permeability, the water vapor permeability and other performance index, used SPSS factor analysis to explore the main influence factors of porous ramie fabric's heat moisture comfort. Results shows that: the main influence factors of ramie fabric's heat-moisture is the heat preservation material, the air permeability and the moisture permeability, get the equation of porous ramie fabric' s heat-moisture comfort: F=0.45855y1+0.30588y2+0.13549y3, evaluated and sorted the sample fabric' s heat-moisture comfort.展开更多
文摘Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Optimization of off-road vehicle suspension system is one of the most effective methods, which could considerably enhance the vehicle stability and controllability. In this work, a comprehensive optimization of an off-read vehicle suspension system model was carried out using software ADAMS. The geometric parameters of suspension system were optimized using genetic algorithm (GA) in a way that ride comfort, handling and stability of vehicle were improved. The results of optimized suspension system and variations of geometric parameters due to road roughness and different steering angles were presented in ADAMS and the results of optimized and conventional suspension systems during various driving maneuvers were compared. The simulation results indicate that the camber angle variations decrease by the optimized suspension system, resulting in improved handling and ride comfort characteristics.
文摘This paper in the light of the structure parameters of the ramie fabric to research and evaluation it's heart-moisture comfort. Selected 15 kinds of ramie fabric to test the average density, the thickness, the tightness, the heat rate, the heat transfer coefficient, the Clo, the air permeability, the water vapor permeability and other performance index, used SPSS factor analysis to explore the main influence factors of porous ramie fabric's heat moisture comfort. Results shows that: the main influence factors of ramie fabric's heat-moisture is the heat preservation material, the air permeability and the moisture permeability, get the equation of porous ramie fabric' s heat-moisture comfort: F=0.45855y1+0.30588y2+0.13549y3, evaluated and sorted the sample fabric' s heat-moisture comfort.