The safety and the fatigue comfort were compared between a domestic and a Japanese postal bicycle. Firstly, the fatigue comfort of these two kinds of bicycles was evaluated by surface electromyographic signal (sEMG) e...The safety and the fatigue comfort were compared between a domestic and a Japanese postal bicycle. Firstly, the fatigue comfort of these two kinds of bicycles was evaluated by surface electromyographic signal (sEMG) experiment, in which human lower limb muscle groups were research objects, and the average EMG (AEMG) index and median frequency (MF) were chosen as the evaluation indexes. Secondly, the safety of these two kinds of bicycle frames was analyzed and compared by using the finite element analysis. The results show that the riding fatigue comfort of the Japanese postal bicycle is better, and the Japanese postal bicycle frame is more safe and reasonable although both the postal bicycles meet the requirement for strength. Finally, based on the above analysis, the frame structure and related parameters of the domestic postal bicycle were improved with reference to the Japanese postal bicycle and biomechanics theory.展开更多
With 1 185 pi eces of questionnaire, it is found that in China, people take fresh air, odor, e tc., as well as indoor air temperature, humidity, as the most important indoor a ir parameters. It is also found that ther...With 1 185 pi eces of questionnaire, it is found that in China, people take fresh air, odor, e tc., as well as indoor air temperature, humidity, as the most important indoor a ir parameters. It is also found that there is a significant sensitivity differen ce in indoor environment between southerners and northerners in China. People fr om different regions have different demands for their working and living environ ment. Therefore, as a good design of air conditioning system, it is strongly rec ommended that the different demands of people from different regions should be t aken into consideration.展开更多
In order to improve ride comfort and handling performance of the vehicle, an adaptive hybrid control algorithm is proposed for semi-active suspension systems. The virtues of sky-hook is combined with ground-hook contr...In order to improve ride comfort and handling performance of the vehicle, an adaptive hybrid control algorithm is proposed for semi-active suspension systems. The virtues of sky-hook is combined with ground-hook control strategies and a more suitable compromise for the suspension systems is chosen. The hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high speed conditions. Damping continuous adjustable absorber is used to continuously control the damping force so as to eliminate the damping force jerk instead of traditional on-off control policy. Based on suspension stroke measured by sensors, unscented Kalman filter is designed to estimate the suspension states in real-time for the realization of hybrid control, which improves the robustness of the control strategy and is adaptive to different types of road profiles. Finally, the proposed control algorithm is validated under the following two typical road profiles: half-sine speed bump road and the random road. The simulation results indicate that the hybrid control algorithm could offer a good coordination between ride comfort and handling of the vehicle.展开更多
Moisture and water transfer under the condition of heavy sweating are analyzed. Four different experiments are made to test moisture resistance, water-keep, wicking effect and drying ability of samples. Then gray anal...Moisture and water transfer under the condition of heavy sweating are analyzed. Four different experiments are made to test moisture resistance, water-keep, wicking effect and drying ability of samples. Then gray analysis method is introduced to evaluate the comprehensive comfort of these fabrics. Result shows chemical fiber with high moisture transfer performance has advantage in water transfer and diffusion, which is suitable for human under the condition of heavy sweating. Though natural fiber can absorb moisture well, it cannot transfer fluid sweat. Therefore natural fiber fabrics such as cotton, wool are unsuitable to make functional sportswear.展开更多
Latvian children under the age of 7 can spend up to 60 hours per week in daycare centers and therefore it is very important to establish a healthy and comfortable daycare environment that children will find pleasant a...Latvian children under the age of 7 can spend up to 60 hours per week in daycare centers and therefore it is very important to establish a healthy and comfortable daycare environment that children will find pleasant and stimulating to stay in. This study investigates indoor air quality and thermal comfort within six daycare centers (old, renovated and new-built) in moderate climate zone of Latvia. Measurements of carbon dioxide, air temperature and relative humidity were carried out, and data regarding daycare center characteristics and maintenance activities was collected via combination of field visits, record analysis and interviews. It was found that carbon dioxide concentrations exceeded 1000 ppm in 75% of daycare centers studied, with the highest (1356 ppm) measured in a renovated facility with the natural ventilation system. Thus installation of more efficient ventilation system (mechanical) is recommended to provide acceptable indoor air quality, since opening of windows itself cannot provide the optimal conditions indoors. In all facilities the temperature was kept above 20℃ and the average relative humidity was 40±35%, creating comfortable thermal environment for children.展开更多
Skin seasitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design. By a new psychological & physical researching method, the subjective psychological pe...Skin seasitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design. By a new psychological & physical researching method, the subjective psychological perception of human body sections affected by the same cold stimulus are studied, and with Thurstone comparative judgement the main human body sections' cold sensitivity sequences are obtained. Furthermore the physiological causes for skin sensitive difference of human body sections under clothing are suggested.展开更多
The central buckle, which is often used in a suspension bridge, can improve bridges' performance in the actual operation condition. The influence of the central buckle on natural vibration characteristics and brid...The central buckle, which is often used in a suspension bridge, can improve bridges' performance in the actual operation condition. The influence of the central buckle on natural vibration characteristics and bridge-deck driving comfort of a long-span suspension bridge is studied by using a case study of Siduhe Suspension Bridge in China. Based on the finite element software ANSYS and independently complied program, the influence of the central buckle on the structure force-applied characteristics of a long-span suspension bridge has been explored. The results show that the huge increases of natural frequencies can result in the presence of central buckles because of the increases of bending and torsional rigidities. The central buckle basically makes the stiffening girders and cables within the triangular area covered as a relatively approximate rigid area. Hence, the central buckle can reduce the torsional displacement of the main girder. However, the increases of bending and torsional rigidities have little influence on the impact factor, which is obtained by using vehicle-bridge coupled vibration analysis. This means that the central buckle has little effect on the comfort indices. In addition, it is found that the central buckle can enhance the bridge deck's driving stability due to the decrease of the torsional displacements of the main girder.展开更多
In this paper, the mechanism of fabric-evoked prickle is discussed, which indicates that the mechanical stimuli aroused by the fiber ends on the fabric surface to the skin-sensory receptors are responsible for prickle...In this paper, the mechanism of fabric-evoked prickle is discussed, which indicates that the mechanical stimuli aroused by the fiber ends on the fabric surface to the skin-sensory receptors are responsible for prickle. The factors influencing the intensity of prickle are specialized and anatomized. Several means of sense estimate, including the corresponding statistical measures, are described. A few groping objective methods of evaluating prickle are analyzed, including the testing principles, the advantages and the disadvantages. At last, a new concept is proposed on the objective evaluation of prickle.展开更多
Three design modes of seat suspension,i.e.,negative stiffness elements(NSEs),damping elements(DEs),and negative stiffness-damping elements(NSDEs),are proposed to evaluate the ride performance of a vehicle.Based on a d...Three design modes of seat suspension,i.e.,negative stiffness elements(NSEs),damping elements(DEs),and negative stiffness-damping elements(NSDEs),are proposed to evaluate the ride performance of a vehicle.Based on a dynamic model of a seat suspension and indexes of the root mean square deformation and acceleration of the seat suspension(x RMS)and driver s seat(a RMS),the influence of the design parameters of the NSEs,DEs,and NSDEs on the driver s ride comfort is evaluated.A genetic algorithm is then applied to optimize the parameters of the NSEs,DEs,and NSDEs.The study results indicate that the design parameters of the NSEs and NSDEs remarkably influence x RMS and a RMS,whereas those of the DEs insignificantly influence x RMS and a RMS.Based on the optimal results of the NSEs,DEs,and NSDEs,the damping force of the DEs is 98.3%lower than the restoring force of the NSEs.Therefore,the DEs are ineffective in decreasing x RMS and a RMS.Conversely,the NSEs combined with the damping coefficient of the seat suspension strongly reduce x RMS and a RMS.Consequently,the NSEs can be added to the seat suspension,and the damping coefficient of the seat suspension can also be optimized or controlled to further enhance the vehicle s ride performance.展开更多
基金Supported by Special Fund Project for Technology Innovation of Tianjin (No.10FDZDGX00500)Tianjin Product Quality Inspection Technology Research Institute
文摘The safety and the fatigue comfort were compared between a domestic and a Japanese postal bicycle. Firstly, the fatigue comfort of these two kinds of bicycles was evaluated by surface electromyographic signal (sEMG) experiment, in which human lower limb muscle groups were research objects, and the average EMG (AEMG) index and median frequency (MF) were chosen as the evaluation indexes. Secondly, the safety of these two kinds of bicycle frames was analyzed and compared by using the finite element analysis. The results show that the riding fatigue comfort of the Japanese postal bicycle is better, and the Japanese postal bicycle frame is more safe and reasonable although both the postal bicycles meet the requirement for strength. Finally, based on the above analysis, the frame structure and related parameters of the domestic postal bicycle were improved with reference to the Japanese postal bicycle and biomechanics theory.
文摘With 1 185 pi eces of questionnaire, it is found that in China, people take fresh air, odor, e tc., as well as indoor air temperature, humidity, as the most important indoor a ir parameters. It is also found that there is a significant sensitivity differen ce in indoor environment between southerners and northerners in China. People fr om different regions have different demands for their working and living environ ment. Therefore, as a good design of air conditioning system, it is strongly rec ommended that the different demands of people from different regions should be t aken into consideration.
基金Projects(51375046,51205021)supported by the National Natural Science Foundation of China
文摘In order to improve ride comfort and handling performance of the vehicle, an adaptive hybrid control algorithm is proposed for semi-active suspension systems. The virtues of sky-hook is combined with ground-hook control strategies and a more suitable compromise for the suspension systems is chosen. The hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high speed conditions. Damping continuous adjustable absorber is used to continuously control the damping force so as to eliminate the damping force jerk instead of traditional on-off control policy. Based on suspension stroke measured by sensors, unscented Kalman filter is designed to estimate the suspension states in real-time for the realization of hybrid control, which improves the robustness of the control strategy and is adaptive to different types of road profiles. Finally, the proposed control algorithm is validated under the following two typical road profiles: half-sine speed bump road and the random road. The simulation results indicate that the hybrid control algorithm could offer a good coordination between ride comfort and handling of the vehicle.
基金Shanghai Municipal Education Commission, No03YQHB073
文摘Moisture and water transfer under the condition of heavy sweating are analyzed. Four different experiments are made to test moisture resistance, water-keep, wicking effect and drying ability of samples. Then gray analysis method is introduced to evaluate the comprehensive comfort of these fabrics. Result shows chemical fiber with high moisture transfer performance has advantage in water transfer and diffusion, which is suitable for human under the condition of heavy sweating. Though natural fiber can absorb moisture well, it cannot transfer fluid sweat. Therefore natural fiber fabrics such as cotton, wool are unsuitable to make functional sportswear.
文摘Latvian children under the age of 7 can spend up to 60 hours per week in daycare centers and therefore it is very important to establish a healthy and comfortable daycare environment that children will find pleasant and stimulating to stay in. This study investigates indoor air quality and thermal comfort within six daycare centers (old, renovated and new-built) in moderate climate zone of Latvia. Measurements of carbon dioxide, air temperature and relative humidity were carried out, and data regarding daycare center characteristics and maintenance activities was collected via combination of field visits, record analysis and interviews. It was found that carbon dioxide concentrations exceeded 1000 ppm in 75% of daycare centers studied, with the highest (1356 ppm) measured in a renovated facility with the natural ventilation system. Thus installation of more efficient ventilation system (mechanical) is recommended to provide acceptable indoor air quality, since opening of windows itself cannot provide the optimal conditions indoors. In all facilities the temperature was kept above 20℃ and the average relative humidity was 40±35%, creating comfortable thermal environment for children.
文摘Skin seasitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design. By a new psychological & physical researching method, the subjective psychological perception of human body sections affected by the same cold stimulus are studied, and with Thurstone comparative judgement the main human body sections' cold sensitivity sequences are obtained. Furthermore the physiological causes for skin sensitive difference of human body sections under clothing are suggested.
基金Project(2015CB057701)supported by the National Basic Research Program of ChinaProjects(51308071,51378081)supported by the National Natural Science Foundation of China+2 种基金Project(3JJ4057)supported by the Natural Science Foundation of Hunan Province,ChinaProject(12K076)supported by the Open Fund of Innovation Platform in Hunan Provincial Universities,ChinaProject(2015319825120)supported by the Traffic Department of Appliced Basic Research,China
文摘The central buckle, which is often used in a suspension bridge, can improve bridges' performance in the actual operation condition. The influence of the central buckle on natural vibration characteristics and bridge-deck driving comfort of a long-span suspension bridge is studied by using a case study of Siduhe Suspension Bridge in China. Based on the finite element software ANSYS and independently complied program, the influence of the central buckle on the structure force-applied characteristics of a long-span suspension bridge has been explored. The results show that the huge increases of natural frequencies can result in the presence of central buckles because of the increases of bending and torsional rigidities. The central buckle basically makes the stiffening girders and cables within the triangular area covered as a relatively approximate rigid area. Hence, the central buckle can reduce the torsional displacement of the main girder. However, the increases of bending and torsional rigidities have little influence on the impact factor, which is obtained by using vehicle-bridge coupled vibration analysis. This means that the central buckle has little effect on the comfort indices. In addition, it is found that the central buckle can enhance the bridge deck's driving stability due to the decrease of the torsional displacements of the main girder.
文摘In this paper, the mechanism of fabric-evoked prickle is discussed, which indicates that the mechanical stimuli aroused by the fiber ends on the fabric surface to the skin-sensory receptors are responsible for prickle. The factors influencing the intensity of prickle are specialized and anatomized. Several means of sense estimate, including the corresponding statistical measures, are described. A few groping objective methods of evaluating prickle are analyzed, including the testing principles, the advantages and the disadvantages. At last, a new concept is proposed on the objective evaluation of prickle.
基金The National Key Research and Development Plan(No.2019YFB2006402)the Talent Introduction Fund Project of Hubei Polytechnic University(No.19XJK20R)the Key Scientific Research Project of Hubei Polytechnic University(No.22xjz02A)。
文摘Three design modes of seat suspension,i.e.,negative stiffness elements(NSEs),damping elements(DEs),and negative stiffness-damping elements(NSDEs),are proposed to evaluate the ride performance of a vehicle.Based on a dynamic model of a seat suspension and indexes of the root mean square deformation and acceleration of the seat suspension(x RMS)and driver s seat(a RMS),the influence of the design parameters of the NSEs,DEs,and NSDEs on the driver s ride comfort is evaluated.A genetic algorithm is then applied to optimize the parameters of the NSEs,DEs,and NSDEs.The study results indicate that the design parameters of the NSEs and NSDEs remarkably influence x RMS and a RMS,whereas those of the DEs insignificantly influence x RMS and a RMS.Based on the optimal results of the NSEs,DEs,and NSDEs,the damping force of the DEs is 98.3%lower than the restoring force of the NSEs.Therefore,the DEs are ineffective in decreasing x RMS and a RMS.Conversely,the NSEs combined with the damping coefficient of the seat suspension strongly reduce x RMS and a RMS.Consequently,the NSEs can be added to the seat suspension,and the damping coefficient of the seat suspension can also be optimized or controlled to further enhance the vehicle s ride performance.