In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order t...In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.展开更多
At intensive winter navigation, the ships should separate under movement on opposite courses or make overtaking of slowly moving cargo vessels in the water areas covered with ice. Under navigation within ice channel, ...At intensive winter navigation, the ships should separate under movement on opposite courses or make overtaking of slowly moving cargo vessels in the water areas covered with ice. Under navigation within ice channel, possibilities for maneuvering are reduced; therefore, danger of collision of ships exists. The ice floes between vessels hulls and outside are the major factors defining values and direction of side force and yawing moment that arise on their hulls during divergence. Ice loads on the ship hull exceed considerably the loads caused by water flow around hull. Performed previously experiments in the ice basin have detected that besides increase of side force and yawing moment modules the change of side force directions occurs during the divergence of vessels in comparison with same maneuvering on water area without ice cover. Article contains the detailed problem definition and mathematical model of ships interaction during opposite passing by or overtaking and technical approach to computation of loads on vessels hulls. As example of strategy application, the simulation of loads on overtaking ship was performed, and main results of computations are presented. Outcomes of investigation are character of variation of side force and yawing moment during passage along overtaken ship and dependence of the peak values of additional ice resistance, side force and yawing moment on beam distance between vessels and thickness that are contained in the article.展开更多
In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order prop...In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order proportional-integral-derivative (FOPID) controller gains. Particle swarm optimization (PSO) algorithm is also used to optimize FOPID controllers, and their performances are compared. It is found that FA optimized FOPID controller gives better performance than others. Sensitivity analysis has been carried out to see the robustness of optimum FOPID gains obtained at nominal conditions to wide changes in system parameters, and the optimum FOPID gains need not be reset for wide changes in system parameters.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60974136
文摘In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.
文摘At intensive winter navigation, the ships should separate under movement on opposite courses or make overtaking of slowly moving cargo vessels in the water areas covered with ice. Under navigation within ice channel, possibilities for maneuvering are reduced; therefore, danger of collision of ships exists. The ice floes between vessels hulls and outside are the major factors defining values and direction of side force and yawing moment that arise on their hulls during divergence. Ice loads on the ship hull exceed considerably the loads caused by water flow around hull. Performed previously experiments in the ice basin have detected that besides increase of side force and yawing moment modules the change of side force directions occurs during the divergence of vessels in comparison with same maneuvering on water area without ice cover. Article contains the detailed problem definition and mathematical model of ships interaction during opposite passing by or overtaking and technical approach to computation of loads on vessels hulls. As example of strategy application, the simulation of loads on overtaking ship was performed, and main results of computations are presented. Outcomes of investigation are character of variation of side force and yawing moment during passage along overtaken ship and dependence of the peak values of additional ice resistance, side force and yawing moment on beam distance between vessels and thickness that are contained in the article.
基金the National Natural Science Foundation of China(No.51109090)the Natural Fund of Fujian Province(No.2015J01214)+2 种基金the Key Project of Fujian Provincial Department of Science & Technology(No.2012H0030)the University’s Innovative Project of Xiamen Science & Technology Bureau(No.3502Z20123019)the Project of New Century Excellent Talents of Colleges and Universities of Fujian Province(No.JA12181)
文摘In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order proportional-integral-derivative (FOPID) controller gains. Particle swarm optimization (PSO) algorithm is also used to optimize FOPID controllers, and their performances are compared. It is found that FA optimized FOPID controller gives better performance than others. Sensitivity analysis has been carried out to see the robustness of optimum FOPID gains obtained at nominal conditions to wide changes in system parameters, and the optimum FOPID gains need not be reset for wide changes in system parameters.