期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于IMFAC的无人艇抗干扰航向自适应控制
1
作者 包涛 王琦 +1 位作者 周则兴 陈卓 《计算机测量与控制》 2024年第3期153-158,共6页
针对无人艇在航向控制中易受风浪流等环境干扰,导致控制效果下降的问题,提出一种结合细菌觅食算法的改进无模型自适应控制算法;文章首先分析了偏格式动态线性化方法在无人艇航向控制中的应用问题,并设计了虚拟输出项以满足无模型自适应... 针对无人艇在航向控制中易受风浪流等环境干扰,导致控制效果下降的问题,提出一种结合细菌觅食算法的改进无模型自适应控制算法;文章首先分析了偏格式动态线性化方法在无人艇航向控制中的应用问题,并设计了虚拟输出项以满足无模型自适应控制假设条件,建立了基于偏格式动态线性化方法的无模型自适应航向控制器;针对无模型自适应控制算法参数初始值选取范围问题,设计了改进细菌觅食算法对参数初始值进行预整定,保证了算法的快速收敛;最后通过半物理仿真试验验证了所设计算法的有效性;试验表明,在模拟的3级海况干扰下,无人艇在30°阶跃航向控制和±30°方形航向控制中,相较于传统算法出现的较大稳态误差,使用无模型自适应控制算法能在经过10 s左右调整后,将误差稳定趋近于零,实现无人艇的航向自适应控制。 展开更多
关键词 改进无模型自适应控制算法 无人艇 航向自适应控制 抗干扰算法 半物理仿真试验
下载PDF
Design of robust fuzzy controller for ship course-tracking based on RBF network and backstepping approach 被引量:4
2
作者 ZHANG Song-tao REN Guang 《Journal of Marine Science and Application》 2006年第3期5-10,共6页
This study presents an adaptive fuzzy neural network (FNN) control system for the ship steering autopilot. For the Norrbin ship steering mathematical model with the nonlinear and uncertain dynamic characteristics, an ... This study presents an adaptive fuzzy neural network (FNN) control system for the ship steering autopilot. For the Norrbin ship steering mathematical model with the nonlinear and uncertain dynamic characteristics, an adaptive FNN control system is designed to achieve high-precision track control via the backstepping approach. In the adaptive FNN control system, a FNN backstepping controller is a principal controller which includes a FNN estimator used to estimate the uncertainties, and a robust controller is designed to compensate the shortcoming of the FNN backstepping controller. All adaptive learning algorithms in the adaptive FNN control system are derived from the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. The effectiveness of the proposed adaptive FNN control system is verified by simulation results. 展开更多
关键词 fuzzy neural network ship course-tracking adaptive control backstepping approach
下载PDF
Steering control for underwater gliders 被引量:1
3
作者 You LIU Qing SHEN +1 位作者 Dong-li MA Xiang-jiang YUAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第7期898-914,共17页
Steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic char- acteristics such as payload and shape. A good choice to solve this problem is online system identifica... Steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic char- acteristics such as payload and shape. A good choice to solve this problem is online system identification via in-field trials to capture current dynamic characteristics for control law reconfiguration. Hence, an online polynomial estimator is designed to update the yaw dynamic model of the AUG, and an adaptive model predictive control (MPC) controller is used to calculate the optimal control command based on updated estimated parameters. The MPC controller uses a quadratic program (QP) to compute the optimal control command based on a user-defined cost function. The cost function has two terms, focusing on output reference tracking and move suppression of input, respectively. Move-suppression performance can, at some level, represent energy-saving performance of the MPC controller. Users can balance these two competitive control performances by tuning weights. We have compared the control performance using the second-order polynomial model to that using the filth-order polynomial model, and found that the tbrmer cannot capture the main characteristics of yaw dynamics and may result in vibration during the flight. Both processor-in-loop (PIL) simulations and in-lake tests are presented to validate our steering control performance. 展开更多
关键词 Autonomous underwater glider (AUG) Online system identification Steering control Adaptive control OPTIMALCONTROL Energy saving control Processor-in-loop (PIL)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部