航空发动机在运行过程中,由于其结构的复杂性和外部气流的不稳定性,不可避免地会产生大量的振动问题。针对航空发动机整机振动问题,首先根据航空发动机的实际结构并结合经验总结,建立了一种通用的转子‑支承‑机匣振动传递动力学模型,并...航空发动机在运行过程中,由于其结构的复杂性和外部气流的不稳定性,不可避免地会产生大量的振动问题。针对航空发动机整机振动问题,首先根据航空发动机的实际结构并结合经验总结,建立了一种通用的转子‑支承‑机匣振动传递动力学模型,并从航空发动机内外机匣减振控制问题出发,利用一种新型的控制算法(几何设计法),在有限频域内来设计减振控制器,在传感器和执行机构受限的情况下,尝试对多个输出量(即航空发动机的内机匣和外机匣)进行减振控制,并与经典控制理论法比例、微分、积分(Proportional integral derivative,PID)设计的减振控制器进行减振效果对比,最后通过Matlab/Simulink搭建仿真模型并进行仿真验证。结果表明,几何设计法在有限频域内可以直观地获得最优控制器的存在性、唯一性、最优性,对于主控对象的减振控制最优可高达25 dB,相较于传统控制方法形成明显优势。展开更多
文摘航空发动机在运行过程中,由于其结构的复杂性和外部气流的不稳定性,不可避免地会产生大量的振动问题。针对航空发动机整机振动问题,首先根据航空发动机的实际结构并结合经验总结,建立了一种通用的转子‑支承‑机匣振动传递动力学模型,并从航空发动机内外机匣减振控制问题出发,利用一种新型的控制算法(几何设计法),在有限频域内来设计减振控制器,在传感器和执行机构受限的情况下,尝试对多个输出量(即航空发动机的内机匣和外机匣)进行减振控制,并与经典控制理论法比例、微分、积分(Proportional integral derivative,PID)设计的减振控制器进行减振效果对比,最后通过Matlab/Simulink搭建仿真模型并进行仿真验证。结果表明,几何设计法在有限频域内可以直观地获得最优控制器的存在性、唯一性、最优性,对于主控对象的减振控制最优可高达25 dB,相较于传统控制方法形成明显优势。