针对航空液压管路故障特征难以提取问题,考虑到航空液压系统中振动信号存在非平稳性以及非线性等特点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)的多尺度能量熵(Multi-scale Energy Entropy,MEE)和麻雀搜索算法(Sparro...针对航空液压管路故障特征难以提取问题,考虑到航空液压系统中振动信号存在非平稳性以及非线性等特点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)的多尺度能量熵(Multi-scale Energy Entropy,MEE)和麻雀搜索算法(Sparrow Search Algorithm,SSA)优化极限学习机(Extreme Learning Machine,ELM)的航空液压管路故障诊断方法。首先,采用局域均值分解方法将采集的振动信号自适应分解;其次,综合考虑相关系数-能量比准则,选取最佳PF分量;最后,计算最佳分量的多尺度能量熵,选取合适的尺度因子并将其对应的能量熵值作为特征向量,输入到麻雀搜索算法优化的极限学习机网络模型进行学习训练,实现对航空液压管路的故障进行分类识别。结果表明:该方法能够有效地实现对航空液压管路故障类型的准确识别,为区分航空液压管路故障提供了一种可行的诊断思路。展开更多
文摘针对航空液压管路故障特征难以提取问题,考虑到航空液压系统中振动信号存在非平稳性以及非线性等特点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)的多尺度能量熵(Multi-scale Energy Entropy,MEE)和麻雀搜索算法(Sparrow Search Algorithm,SSA)优化极限学习机(Extreme Learning Machine,ELM)的航空液压管路故障诊断方法。首先,采用局域均值分解方法将采集的振动信号自适应分解;其次,综合考虑相关系数-能量比准则,选取最佳PF分量;最后,计算最佳分量的多尺度能量熵,选取合适的尺度因子并将其对应的能量熵值作为特征向量,输入到麻雀搜索算法优化的极限学习机网络模型进行学习训练,实现对航空液压管路的故障进行分类识别。结果表明:该方法能够有效地实现对航空液压管路故障类型的准确识别,为区分航空液压管路故障提供了一种可行的诊断思路。