A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. ...A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. An automatic landing system is realized for an unmanned aerial vehicle. The results of real time simulation and flight test are given to illustrate the effectiveness and availability of the scheme. Results meet all the requirements for automatic landing of the unmanned aerial vehicle.展开更多
A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. T...A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.展开更多
The software of behaviour-based algorithm~ was parted to several functional modules which represented different behaviours with different priorities. A basic algorithm with S-type arbiter and an improved algorithm wit...The software of behaviour-based algorithm~ was parted to several functional modules which represented different behaviours with different priorities. A basic algorithm with S-type arbiter and an improved algorithm with I-type arbiter were compared. The improved algorithm can reduce judging time and avoid some mistakes of the basic one. In mapping obstacles, the robot adjusted the spread angle according to different distances to obstacles in scaled vector field histogram (SVFH) algorithm, and then the robot turned more sharply in near obstacles than in far obstacles, which made the robot move more safely and smoothly in a cluttered room.展开更多
Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models. To guarantee robustness against parameter uncertainty, an adaptive controller for dive-plane contr...Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models. To guarantee robustness against parameter uncertainty, an adaptive controller for dive-plane control, based on Lyapunov theory and back-stepping techniques, was proposed. In the closed-loop system, asymptotic tracking of the reference depth and pitch angle trajectories was accomplished. Simulation results were presented which show effective dive-plane control in spite of the uncertainties in the system parameters.展开更多
Inverse speed is a reversible maneuver.It is a characteristic of underwater vehicle at low speed.Maneuverability in the vertical plane at a speed lower than inverse speed is different from one at higher speed.In the p...Inverse speed is a reversible maneuver.It is a characteristic of underwater vehicle at low speed.Maneuverability in the vertical plane at a speed lower than inverse speed is different from one at higher speed.In the process of underwater working for observation,AUV's cruise speed is always low.Therefore,the research on inverse speed is important to AUV's maneuverability.The mechanism of inverse speed was analyzed,and then the steady pitching equation was derived.The parameter expression of track angle in vertical plane was deduced.Furthermore,the formula to calculate the inverse speed was obtained.The typical inverse speed phenomenon of the flat body and the revolving body was analyzed.Then the conclusion depicts that,for a particular AUV with flat body,its inverse speed is lower than that of revolving body.After all the calculation and the analysis,a series of special experiments of inverse speed were carried out in the simulation program,in the tank and in the sea trial.展开更多
文摘A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. An automatic landing system is realized for an unmanned aerial vehicle. The results of real time simulation and flight test are given to illustrate the effectiveness and availability of the scheme. Results meet all the requirements for automatic landing of the unmanned aerial vehicle.
文摘A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.
基金National Natural Science Foundation of China(No.60975059)Leading Academic Discipline Project of Shanghai Municipal Education Commission,China(No.J513032)Innovation Program of Shanghai Municipal Education Commission,China(No.09YZ343)
文摘The software of behaviour-based algorithm~ was parted to several functional modules which represented different behaviours with different priorities. A basic algorithm with S-type arbiter and an improved algorithm with I-type arbiter were compared. The improved algorithm can reduce judging time and avoid some mistakes of the basic one. In mapping obstacles, the robot adjusted the spread angle according to different distances to obstacles in scaled vector field histogram (SVFH) algorithm, and then the robot turned more sharply in near obstacles than in far obstacles, which made the robot move more safely and smoothly in a cluttered room.
基金Supported by the National Natural Science Foundation of China under Grant No.50909025/E091002
文摘Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models. To guarantee robustness against parameter uncertainty, an adaptive controller for dive-plane control, based on Lyapunov theory and back-stepping techniques, was proposed. In the closed-loop system, asymptotic tracking of the reference depth and pitch angle trajectories was accomplished. Simulation results were presented which show effective dive-plane control in spite of the uncertainties in the system parameters.
基金Projects(51179035,51279221) supported by the National Natural Science Foundation of ChinaProject(E201121) supported by Science Foundation of Heilongjiang Province,China
文摘Inverse speed is a reversible maneuver.It is a characteristic of underwater vehicle at low speed.Maneuverability in the vertical plane at a speed lower than inverse speed is different from one at higher speed.In the process of underwater working for observation,AUV's cruise speed is always low.Therefore,the research on inverse speed is important to AUV's maneuverability.The mechanism of inverse speed was analyzed,and then the steady pitching equation was derived.The parameter expression of track angle in vertical plane was deduced.Furthermore,the formula to calculate the inverse speed was obtained.The typical inverse speed phenomenon of the flat body and the revolving body was analyzed.Then the conclusion depicts that,for a particular AUV with flat body,its inverse speed is lower than that of revolving body.After all the calculation and the analysis,a series of special experiments of inverse speed were carried out in the simulation program,in the tank and in the sea trial.