Ocean waves are the core environmental elements affecting the movements and structure design of ships. Statistical analysis of wave parameters is the basis for the establishment of long-term ship environmental adaptab...Ocean waves are the core environmental elements affecting the movements and structure design of ships. Statistical analysis of wave parameters is the basis for the establishment of long-term ship environmental adaptability prediction model. The observations from coastal stations, buoys, altimeters and volunteer ships that cover from 1993 to 2011 were interpolated into miller Ion-lat grids by using bilinear method and the analytical fields of ocean waves were given. By using optimal interpolation, the analysis wave fields were assimilated into the WAVEWATCH III (WW3) simulation results. From the assimilated results, the wave rose statistics, the wave height of muitiyear return period and the extreme 2-D wave spectrum are related to the ship seakeeping were calculated. Finally, the wave statistics in China offshore were analyzed in detail.展开更多
An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a ten...An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-13 method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.展开更多
The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is...The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is also considered.The computation programs which are used to solve the differential equations in the time domain are compiled and the principal factors of concern including the angular movements at the upper and lower ends of the riser,lateral displacements and bending stresses are presented.Then the effects of current velocity,random wave,top tension,vessel mean offset,low frequency motion and internal flow velocity on the bending stresses of the riser are analyzed in detail.展开更多
基金supports from National Natural Science Foundation of China (No. 41406032 and No. 41376014)Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics (No. SOED1305)
文摘Ocean waves are the core environmental elements affecting the movements and structure design of ships. Statistical analysis of wave parameters is the basis for the establishment of long-term ship environmental adaptability prediction model. The observations from coastal stations, buoys, altimeters and volunteer ships that cover from 1993 to 2011 were interpolated into miller Ion-lat grids by using bilinear method and the analytical fields of ocean waves were given. By using optimal interpolation, the analysis wave fields were assimilated into the WAVEWATCH III (WW3) simulation results. From the assimilated results, the wave rose statistics, the wave height of muitiyear return period and the extreme 2-D wave spectrum are related to the ship seakeeping were calculated. Finally, the wave statistics in China offshore were analyzed in detail.
基金supported by the National Natural Science Foundation of China (No. 51279187)the High Technology Research and Development Program of China (863 Program, No. 2010AA09Z303)+1 种基金the Fundamental Research Funds for the Central Universities (No.201262005)the Natural Science Foundation of Shandong Province (No. 2009ZRA05080)
文摘An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-13 method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.
基金supported by the High Technology Research and Development Program of China (863 Program, Grant Nos SQ2009AA09Z3487852 and 2007AA09Z313)
文摘The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is also considered.The computation programs which are used to solve the differential equations in the time domain are compiled and the principal factors of concern including the angular movements at the upper and lower ends of the riser,lateral displacements and bending stresses are presented.Then the effects of current velocity,random wave,top tension,vessel mean offset,low frequency motion and internal flow velocity on the bending stresses of the riser are analyzed in detail.