A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid bou...A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid boundaries including the seabed. A peculiarity of the proposed implementation is the application of the so-called "moving-patch" method for simulating steady boundaries of large extensions. The method is based on an assumption that at any moment just the part of the boundary ("moving patch") which lies close to the interacting ship is significant for the near-field interaction. For a specific case of the fiat bottom, comparative computations were performed to determine optimal dimensions of the patch and of the constituting panels based on the trade-off between acceptable accuracy and reasonable efficiency. The method was applied to estimate the sway force on a ship hull moving obliquely across a dredged channel. The method was validated for a case of ship-to-ship interaction when tank data were available. This study also contains a description of a newly developed spline approximation algorithm necessary for creating consistent discretizations of ship hulls with various degrees of refinement.展开更多
Small water-plane area twin-hull(SWATH) has drawn the attention of many researchers due to its good sea-keeping ability.In this paper,MMG's idea of separation was used to perform SWATH movement modeling and simulat...Small water-plane area twin-hull(SWATH) has drawn the attention of many researchers due to its good sea-keeping ability.In this paper,MMG's idea of separation was used to perform SWATH movement modeling and simulation;respectively the forces and moment of SWATH were divided into bare hull,propeller,rudder at the fluid hydrodynamics,etc.Wake coefficient at the propellers which reduces thrust coefficient,and rudder mutual interference forces among the hull and propeller,for the calculation of SWATH,were all considered.The fourth-order Runge-Kutta method of integration was used by solving differential equations,in order to get SWATH's movement states.As an example,a turning test at full speed and full starboard rudder of ‘Seagull' craft is shown.The simulation results show the SWATH's regular pattern and trend of motion.It verifies the correctness of the mathematical model of the turning movement.The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen,or safety assessment for ocean engineering project.Lastly,the full mission navigation simulating system(FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.展开更多
The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated in-situ with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water di...The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated in-situ with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water diffusion coefficient and dynamics of adhesive-graphite joints treated by different surface treatment methods were also investigated. Calculation results indicated that the water diffusion rate in adhesive-graphite joints treated by sandpaper was higher than that treated by chemical oxidation or by silane couple agent. Also the durability of graphite joints treated by coupling agent is superior to that treated by chemical oxidation or sandpaper burnishing.展开更多
基金Supported by the Portuguese Foundation for Science and Technology under Grant No.PTDC/ECM/100686/2008
文摘A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid boundaries including the seabed. A peculiarity of the proposed implementation is the application of the so-called "moving-patch" method for simulating steady boundaries of large extensions. The method is based on an assumption that at any moment just the part of the boundary ("moving patch") which lies close to the interacting ship is significant for the near-field interaction. For a specific case of the fiat bottom, comparative computations were performed to determine optimal dimensions of the patch and of the constituting panels based on the trade-off between acceptable accuracy and reasonable efficiency. The method was applied to estimate the sway force on a ship hull moving obliquely across a dredged channel. The method was validated for a case of ship-to-ship interaction when tank data were available. This study also contains a description of a newly developed spline approximation algorithm necessary for creating consistent discretizations of ship hulls with various degrees of refinement.
基金Supported by the National Nature Science Foundation of China under Grant No.51109020 the National Key Project for Basic Research“973”(2009CB320805)
文摘Small water-plane area twin-hull(SWATH) has drawn the attention of many researchers due to its good sea-keeping ability.In this paper,MMG's idea of separation was used to perform SWATH movement modeling and simulation;respectively the forces and moment of SWATH were divided into bare hull,propeller,rudder at the fluid hydrodynamics,etc.Wake coefficient at the propellers which reduces thrust coefficient,and rudder mutual interference forces among the hull and propeller,for the calculation of SWATH,were all considered.The fourth-order Runge-Kutta method of integration was used by solving differential equations,in order to get SWATH's movement states.As an example,a turning test at full speed and full starboard rudder of ‘Seagull' craft is shown.The simulation results show the SWATH's regular pattern and trend of motion.It verifies the correctness of the mathematical model of the turning movement.The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen,or safety assessment for ocean engineering project.Lastly,the full mission navigation simulating system(FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.
文摘The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated in-situ with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water diffusion coefficient and dynamics of adhesive-graphite joints treated by different surface treatment methods were also investigated. Calculation results indicated that the water diffusion rate in adhesive-graphite joints treated by sandpaper was higher than that treated by chemical oxidation or by silane couple agent. Also the durability of graphite joints treated by coupling agent is superior to that treated by chemical oxidation or sandpaper burnishing.