Fatigue failure has long been an important issue for ships and offshore structures. Among the numerous methods for predicting fatigue life, the spectral method is accepted as the most reliable. Although the theory beh...Fatigue failure has long been an important issue for ships and offshore structures. Among the numerous methods for predicting fatigue life, the spectral method is accepted as the most reliable. Although the theory behind spectral analysis is straight-forward, the analysis itself is complicated and time-consuming because it is closely related to critical technical details such as the application of fatigue loading (wave pressures and the inertial forces due to cargoes), the extraction of the stress, and the calculation of stress RAO. Here, four key technical details-loading application, displacement boundary condition, the calculation of stress RAO, and the extraction of the fatigue stress-are discussed thoroughly. For each aspect, a resolution is presented based on the finite element pre-and post-processing software MSC/PATRAN or FE solver MSC/NASTRAN. The resolutions are effective and efficient, which can help engineers perform spectral fatigue analysis accurately and faster.展开更多
This paper describes the activities carried out by CETENA in collaboration with the Italian Navy to assess the behavior of new FREMM frigates by means of an automatic hull monitoring system and to predict the expected...This paper describes the activities carried out by CETENA in collaboration with the Italian Navy to assess the behavior of new FREMM frigates by means of an automatic hull monitoring system and to predict the expected fatigue life of ship structure by analyzing recorded data through a specifically developed post-processing tool.展开更多
文摘Fatigue failure has long been an important issue for ships and offshore structures. Among the numerous methods for predicting fatigue life, the spectral method is accepted as the most reliable. Although the theory behind spectral analysis is straight-forward, the analysis itself is complicated and time-consuming because it is closely related to critical technical details such as the application of fatigue loading (wave pressures and the inertial forces due to cargoes), the extraction of the stress, and the calculation of stress RAO. Here, four key technical details-loading application, displacement boundary condition, the calculation of stress RAO, and the extraction of the fatigue stress-are discussed thoroughly. For each aspect, a resolution is presented based on the finite element pre-and post-processing software MSC/PATRAN or FE solver MSC/NASTRAN. The resolutions are effective and efficient, which can help engineers perform spectral fatigue analysis accurately and faster.
文摘This paper describes the activities carried out by CETENA in collaboration with the Italian Navy to assess the behavior of new FREMM frigates by means of an automatic hull monitoring system and to predict the expected fatigue life of ship structure by analyzing recorded data through a specifically developed post-processing tool.