针对船舶图像目标检测中存在的小目标检测准确率低、系统鲁棒性差的问题,提出一种改进的YOLO v2算法对船舶图像目标进行检测。通过目标框维度聚类、网络结构改进、输入图像多尺度变换等方法对传统YOLO v2算法进行改进,使其能够更好地适...针对船舶图像目标检测中存在的小目标检测准确率低、系统鲁棒性差的问题,提出一种改进的YOLO v2算法对船舶图像目标进行检测。通过目标框维度聚类、网络结构改进、输入图像多尺度变换等方法对传统YOLO v2算法进行改进,使其能够更好地适应船舶目标检测任务。测试结果表明,在输入图像尺寸为416×416时,该算法的平均精确率(mean Average Precision,mAP)达到79.1%,检测速度为64帧/s(Frames Per Second,FPS)。所提方法可满足实时检测的需要,且具有小目标检测精度高、鲁棒性强的特点。展开更多
文摘针对船舶图像目标检测中存在的小目标检测准确率低、系统鲁棒性差的问题,提出一种改进的YOLO v2算法对船舶图像目标进行检测。通过目标框维度聚类、网络结构改进、输入图像多尺度变换等方法对传统YOLO v2算法进行改进,使其能够更好地适应船舶目标检测任务。测试结果表明,在输入图像尺寸为416×416时,该算法的平均精确率(mean Average Precision,mAP)达到79.1%,检测速度为64帧/s(Frames Per Second,FPS)。所提方法可满足实时检测的需要,且具有小目标检测精度高、鲁棒性强的特点。