期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于轻量化快速卷积与双向加权特征融合网络的船舶裂纹检测
1
作者 王冲 朱玉辉 《中国舰船研究》 CSCD 北大核心 2024年第5期95-106,共12页
[目的]针对人工目视与超声波方法的船舶裂纹检测存在效率低下、成本高昂和危险性高的特点,提出一种基于深度学习的船舶裂纹检测方法。[方法]首先,在原模型YOLOv5s的主干网络中使用轻量化卷积结构(GSConv)替代标准卷积并融入注意力机制,... [目的]针对人工目视与超声波方法的船舶裂纹检测存在效率低下、成本高昂和危险性高的特点,提出一种基于深度学习的船舶裂纹检测方法。[方法]首先,在原模型YOLOv5s的主干网络中使用轻量化卷积结构(GSConv)替代标准卷积并融入注意力机制,在降低主干网络参数量与计算量的同时,提升主干网络对裂纹特征的提取能力;然后,在网络的颈部使用基于PConv构建的C3_Faster替代原C3模块,提升模型的图像处理速度,增强模型快速性;最后,设计一种简化的双向加权特征融合网络(BiFFN)以改进原模型YOLOv5s中的特征聚合网络,提升裂纹的语义信息与位置信息的融合效果,以及模型对裂纹的识别准确度与定位精度。[结果]通过对船舶裂纹原始数据与增强数据的学习,所提改进模型实现了94.11%的检测精度和93.50%的召回率,模型的计算量降低了17.93%,参数量降低了15.81%。[结论]研究表明,基于轻量化快速卷积与双向加权特征融合网络(MLF-YOLO)的船舶裂纹检测方法,实现了模型轻量化与较高的检测精度和召回率,结果可为开发自主无人机船舶检测提供参考。 展开更多
关键词 船舶裂纹检测 深度学习 轻量化快速卷积 注意力机制 特征融合 数据增强
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部