期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于轻量化快速卷积与双向加权特征融合网络的船舶裂纹检测
1
作者
王冲
朱玉辉
《中国舰船研究》
CSCD
北大核心
2024年第5期95-106,共12页
[目的]针对人工目视与超声波方法的船舶裂纹检测存在效率低下、成本高昂和危险性高的特点,提出一种基于深度学习的船舶裂纹检测方法。[方法]首先,在原模型YOLOv5s的主干网络中使用轻量化卷积结构(GSConv)替代标准卷积并融入注意力机制,...
[目的]针对人工目视与超声波方法的船舶裂纹检测存在效率低下、成本高昂和危险性高的特点,提出一种基于深度学习的船舶裂纹检测方法。[方法]首先,在原模型YOLOv5s的主干网络中使用轻量化卷积结构(GSConv)替代标准卷积并融入注意力机制,在降低主干网络参数量与计算量的同时,提升主干网络对裂纹特征的提取能力;然后,在网络的颈部使用基于PConv构建的C3_Faster替代原C3模块,提升模型的图像处理速度,增强模型快速性;最后,设计一种简化的双向加权特征融合网络(BiFFN)以改进原模型YOLOv5s中的特征聚合网络,提升裂纹的语义信息与位置信息的融合效果,以及模型对裂纹的识别准确度与定位精度。[结果]通过对船舶裂纹原始数据与增强数据的学习,所提改进模型实现了94.11%的检测精度和93.50%的召回率,模型的计算量降低了17.93%,参数量降低了15.81%。[结论]研究表明,基于轻量化快速卷积与双向加权特征融合网络(MLF-YOLO)的船舶裂纹检测方法,实现了模型轻量化与较高的检测精度和召回率,结果可为开发自主无人机船舶检测提供参考。
展开更多
关键词
船舶裂纹检测
深度学习
轻量化快速卷积
注意力机制
特征融合
数据增强
下载PDF
职称材料
题名
基于轻量化快速卷积与双向加权特征融合网络的船舶裂纹检测
1
作者
王冲
朱玉辉
机构
武汉理工大学高性能舰船技术教育部重点实验室
武汉理工大学船海与能源动力工程学院
出处
《中国舰船研究》
CSCD
北大核心
2024年第5期95-106,共12页
基金
国家自然科学基金资助项目(52101369)。
文摘
[目的]针对人工目视与超声波方法的船舶裂纹检测存在效率低下、成本高昂和危险性高的特点,提出一种基于深度学习的船舶裂纹检测方法。[方法]首先,在原模型YOLOv5s的主干网络中使用轻量化卷积结构(GSConv)替代标准卷积并融入注意力机制,在降低主干网络参数量与计算量的同时,提升主干网络对裂纹特征的提取能力;然后,在网络的颈部使用基于PConv构建的C3_Faster替代原C3模块,提升模型的图像处理速度,增强模型快速性;最后,设计一种简化的双向加权特征融合网络(BiFFN)以改进原模型YOLOv5s中的特征聚合网络,提升裂纹的语义信息与位置信息的融合效果,以及模型对裂纹的识别准确度与定位精度。[结果]通过对船舶裂纹原始数据与增强数据的学习,所提改进模型实现了94.11%的检测精度和93.50%的召回率,模型的计算量降低了17.93%,参数量降低了15.81%。[结论]研究表明,基于轻量化快速卷积与双向加权特征融合网络(MLF-YOLO)的船舶裂纹检测方法,实现了模型轻量化与较高的检测精度和召回率,结果可为开发自主无人机船舶检测提供参考。
关键词
船舶裂纹检测
深度学习
轻量化快速卷积
注意力机制
特征融合
数据增强
Keywords
ship crack detection
deep learning
lightweight fast convolution
attention mechanism
feature fusion
data augmentation
分类号
U672.7 [交通运输工程—船舶及航道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于轻量化快速卷积与双向加权特征融合网络的船舶裂纹检测
王冲
朱玉辉
《中国舰船研究》
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部