ObjectiveThe aim was to seek for a rapid DNA minipreparation method from wheat leaf. MethodThe total DNA of wheat leaf was extracted using CTAB, SDS and boiling water, separately, with some modifications. Integrity an...ObjectiveThe aim was to seek for a rapid DNA minipreparation method from wheat leaf. MethodThe total DNA of wheat leaf was extracted using CTAB, SDS and boiling water, separately, with some modifications. Integrity and purity of nucleic acids were detected through agarose gel electrophoresis, ultraviolet absorption and PCR. ResultThe DNA extracted by the modified CTAB method had high quality and purity, and was not degraded. Two hundreds of DNA samples could be extracted each workday by per capita using this method; and the PCR detection of wheat transgenic plants showed that amplified bands of target gene were clear, without false-positive, and the test results were satisfactory. The DNA purity and concentration extracted by modified SDS method were not as good as that extracted by modified CTAB method, but it also met the DNA requirements of major molecular research. The DNA quantity extracted by modified boiling method was small and there were a lot of impurities in it, PCR detection of this DNA showed no amplified band. ConclusionModified CTAB method is a simple and rapid method for DNA minipreparation from wheat leaf, and was suitable for PCR amplification and other molecular biology researches.展开更多
To improve agronomic traits of partial waxy wheat, crossing between Chinese Baihuomai and wheat cultivars PH85-16, Jinan 17, and Yannong 15 was performed. The progeny plants were further backcrossed to these cultivars...To improve agronomic traits of partial waxy wheat, crossing between Chinese Baihuomai and wheat cultivars PH85-16, Jinan 17, and Yannong 15 was performed. The progeny plants were further backcrossed to these cultivars as recurrent parents for five generations. To get homozygous plants with the null allele at the Wx-D1 locus, self-pollination was carried out in the BC5F1 generation. Through another three generations, 6 partial waxy wheat lines were obtained, which had similar agronomic performance as their recurrent parents and carried the null allele at the Wx-D1 locus. In each generation, the Wx-D1 locus was identified by a PCR-based DNA marker and the agronomic traits were examined in progeny plants. The results from this study indicate that the use of backcrossing with a PCR-based DNA marker was useful in waxy wheat breeding. These partial waxy wheat lines can be used in field production.展开更多
International Maize and Wheat Improvement Center (CIMMYT) and Kazakhstan collaborative activities on wheat improvement are focused in the following main areas: (1) wheat germplasm enhancement: Kazakhstan-Siberia...International Maize and Wheat Improvement Center (CIMMYT) and Kazakhstan collaborative activities on wheat improvement are focused in the following main areas: (1) wheat germplasm enhancement: Kazakhstan-Siberian Network on Wheat Improvement (KASIB) and Shuttle Breeding "Mexico-KASIB" Programs; (2) Conservation agriculture (CA) for wheat production and crop diversification. Nineteen breeding programs of Kazakhstan and Russia are united by KASIB Network and Shuttle Breeding. By 2014, more than 15,000 wheat lines and varieties were involved in breeding programs of Kazakhstan and Russia; 10 varieties were developed and released. The KASIB Network and Shuttle Breeding Program were recognized as one of the best example of the effective regional and international cooperation in Kazakhstan and Russia. In the beginning of 2000 CIMMYT, National Agricultural Research System, the Ministry of Agriculture, FAO, World Bank in cooperation with farmers initiated large-scale activities based on CA in Kazakhstan. Due the joint efforts, area under CA-based practices has been increasing from virtually none to an estimated area of 500,000 ha in 2007, 1,200,000 ha in 2008, 2,000,000 ha in 2014 with continued rapid increases in area. Kazakhstan is now included among the top ten countries with the largest areas under no-tillage in the world.展开更多
While studies have focused on the use of biochar as soil amendment, little attention has been paid to its effect on soil fauna. The biochar was produced from slow pyrolysis of wheat straw in the present study. Four tr...While studies have focused on the use of biochar as soil amendment, little attention has been paid to its effect on soil fauna. The biochar was produced from slow pyrolysis of wheat straw in the present study. Four treatments, no addition (CK) and three rates of biochar addition at 2 400 (B1), 12 000 (B5) and 48 000 kg ha-1 (B20), were investigated to assess the effect of biochar addition to soil on nematode abundance and diversity in a microcosm trial in China. The B5 and B20 application significantly increased the total organic carbon and the C/N ratio. No significant difference in total nematode abundance was found among the treatments. The biochar addition to the soil significantly increased the abundance of fungivores, and decreased that of plant parasites. The diversity of soil nematodes was significantly increased by B1 compared to CK. Nematode trophic groups were more effectively indicative to biochar addition than total abundance.展开更多
基金Supported by Major National Transgenic Breeding Project(2011ZX08002-001)the Agricultural Science and Technology Support Program of Jiangsu Province(BE2011306)Agricultural Science and Technology Independent Innovation Fund ofJiangsu Province[CX(12)2026]~~
文摘ObjectiveThe aim was to seek for a rapid DNA minipreparation method from wheat leaf. MethodThe total DNA of wheat leaf was extracted using CTAB, SDS and boiling water, separately, with some modifications. Integrity and purity of nucleic acids were detected through agarose gel electrophoresis, ultraviolet absorption and PCR. ResultThe DNA extracted by the modified CTAB method had high quality and purity, and was not degraded. Two hundreds of DNA samples could be extracted each workday by per capita using this method; and the PCR detection of wheat transgenic plants showed that amplified bands of target gene were clear, without false-positive, and the test results were satisfactory. The DNA purity and concentration extracted by modified SDS method were not as good as that extracted by modified CTAB method, but it also met the DNA requirements of major molecular research. The DNA quantity extracted by modified boiling method was small and there were a lot of impurities in it, PCR detection of this DNA showed no amplified band. ConclusionModified CTAB method is a simple and rapid method for DNA minipreparation from wheat leaf, and was suitable for PCR amplification and other molecular biology researches.
基金This work was supported by the grant from the National High Technology Research and Development Program of China (No. 2004AA212130).
文摘To improve agronomic traits of partial waxy wheat, crossing between Chinese Baihuomai and wheat cultivars PH85-16, Jinan 17, and Yannong 15 was performed. The progeny plants were further backcrossed to these cultivars as recurrent parents for five generations. To get homozygous plants with the null allele at the Wx-D1 locus, self-pollination was carried out in the BC5F1 generation. Through another three generations, 6 partial waxy wheat lines were obtained, which had similar agronomic performance as their recurrent parents and carried the null allele at the Wx-D1 locus. In each generation, the Wx-D1 locus was identified by a PCR-based DNA marker and the agronomic traits were examined in progeny plants. The results from this study indicate that the use of backcrossing with a PCR-based DNA marker was useful in waxy wheat breeding. These partial waxy wheat lines can be used in field production.
文摘International Maize and Wheat Improvement Center (CIMMYT) and Kazakhstan collaborative activities on wheat improvement are focused in the following main areas: (1) wheat germplasm enhancement: Kazakhstan-Siberian Network on Wheat Improvement (KASIB) and Shuttle Breeding "Mexico-KASIB" Programs; (2) Conservation agriculture (CA) for wheat production and crop diversification. Nineteen breeding programs of Kazakhstan and Russia are united by KASIB Network and Shuttle Breeding. By 2014, more than 15,000 wheat lines and varieties were involved in breeding programs of Kazakhstan and Russia; 10 varieties were developed and released. The KASIB Network and Shuttle Breeding Program were recognized as one of the best example of the effective regional and international cooperation in Kazakhstan and Russia. In the beginning of 2000 CIMMYT, National Agricultural Research System, the Ministry of Agriculture, FAO, World Bank in cooperation with farmers initiated large-scale activities based on CA in Kazakhstan. Due the joint efforts, area under CA-based practices has been increasing from virtually none to an estimated area of 500,000 ha in 2007, 1,200,000 ha in 2008, 2,000,000 ha in 2014 with continued rapid increases in area. Kazakhstan is now included among the top ten countries with the largest areas under no-tillage in the world.
基金Supported by the National Basic Research Program (973 Program) of China (No. 2011CB100504)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q1-07)the Bluemoon Foundation, USA
文摘While studies have focused on the use of biochar as soil amendment, little attention has been paid to its effect on soil fauna. The biochar was produced from slow pyrolysis of wheat straw in the present study. Four treatments, no addition (CK) and three rates of biochar addition at 2 400 (B1), 12 000 (B5) and 48 000 kg ha-1 (B20), were investigated to assess the effect of biochar addition to soil on nematode abundance and diversity in a microcosm trial in China. The B5 and B20 application significantly increased the total organic carbon and the C/N ratio. No significant difference in total nematode abundance was found among the treatments. The biochar addition to the soil significantly increased the abundance of fungivores, and decreased that of plant parasites. The diversity of soil nematodes was significantly increased by B1 compared to CK. Nematode trophic groups were more effectively indicative to biochar addition than total abundance.