期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于色度分割与图割算法的视差估计算法 被引量:2
1
作者 元辉 李志斌 刘微 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期12-18,共7页
为提高视差估计的准确度,提出了一种基于色度分割和图割算法的视差估计算法.该算法采用均值漂移算法对当前图像进行色度分割,并对每个色度分割区域的像素集合分别用图割算法在参考图像中进行像素匹配,进而估计出当前图像的视差.与传统... 为提高视差估计的准确度,提出了一种基于色度分割和图割算法的视差估计算法.该算法采用均值漂移算法对当前图像进行色度分割,并对每个色度分割区域的像素集合分别用图割算法在参考图像中进行像素匹配,进而估计出当前图像的视差.与传统的全局优化算法不同,文中提出的视差估计算法将每个色度分割区域作为整体分别进行全局优化,因而可以提高物体边缘的视差估计准确度.实验结果表明,该算法的视差估计结果更加准确. 展开更多
关键词 图割 色度分割 全局优化 视差估计 均值漂移
下载PDF
基于置信度传播和色度分割算法的深度估计 被引量:3
2
作者 汪永宝 杨红雨 兰时勇 《计算机技术与发展》 2015年第9期6-11,共6页
为了提高图像序列深度估计的质量,提出了一种基于置信度传播和色度分割的全局匹配算法。首先,构造了包含匹配误差项和平滑性假设的能量函数,通过置信度传播算法来求取初始视差图序列。然后用均值漂移算法对每一帧进行色度分割,对每个色... 为了提高图像序列深度估计的质量,提出了一种基于置信度传播和色度分割的全局匹配算法。首先,构造了包含匹配误差项和平滑性假设的能量函数,通过置信度传播算法来求取初始视差图序列。然后用均值漂移算法对每一帧进行色度分割,对每个色度分割区域分别进行全局匹配,得到新的视差图。最后,构造包含对极几何约束的新能量函数,使用置信度传播算法进行全局匹配和迭代优化,获取最终视差图序列。实验结果表明,文中算法可以得到高质量的深度图,能够改善图像噪声、弱纹理和物体遮挡等问题。 展开更多
关键词 置信度传播 多视图几何 色度分割 对极几何 深度估计
下载PDF
三维视频深度图像处理及其ASIC实现
3
作者 郭琪 周莉 +1 位作者 刘正华 杨博 《电子技术应用》 北大核心 2012年第4期43-45,48,共4页
基于自适应色度分割方法,采用专用集成电路(ASIC)完成深度图像的处理及优化。系统级仿真验证结果表明,该深度图像处理方法具有实时性、兼容性、实用性等特点,适用于实时自由视点3D视频的处理。
关键词 专用集成电路设计 自由视点视频 深度图像 色度图像分割 运动-视差联合预测
下载PDF
Tongue image segmentation and tongue color classification based on deep learning 被引量:4
4
作者 LIU Wei CHEN Jinming +3 位作者 LIU Bo HU Wei WU Xingjin ZHOU Hui 《Digital Chinese Medicine》 2022年第3期253-263,共11页
Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe... Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe was used to label the tongue mask and Snake model to optimize the labeling results.A new dataset was constructed for tongue image segmentation.Tongue color was marked to build a classified dataset for network training.In this research,the Inception+Atrous Spatial Pyramid Pooling(ASPP)+UNet(IAUNet)method was proposed for tongue image segmentation,based on the existing UNet,Inception,and atrous convolution.Moreover,the Tongue Color Classification Net(TCCNet)was constructed with reference to ResNet,Inception,and Triple-Loss.Several important measurement indexes were selected to evaluate and compare the effects of the novel and existing methods for tongue segmentation and tongue color classification.IAUNet was compared with existing mainstream methods such as UNet and DeepLabV3+for tongue segmentation.TCCNet for tongue color classification was compared with VGG16 and GoogLeNet.Results IAUNet can accurately segment the tongue from original images.The results showed that the Mean Intersection over Union(MIoU)of IAUNet reached 96.30%,and its Mean Pixel Accuracy(MPA),mean Average Precision(mAP),F1-Score,G-Score,and Area Under Curve(AUC)reached 97.86%,99.18%,96.71%,96.82%,and 99.71%,respectively,suggesting IAUNet produced better segmentation than other methods,with fewer parameters.Triplet-Loss was applied in the proposed TCCNet to separate different embedded colors.The experiment yielded ideal results,with F1-Score and mAP of the TCCNet reached 88.86% and 93.49%,respectively.Conclusion IAUNet based on deep learning for tongue segmentation is better than traditional ones.IAUNet can not only produce ideal tongue segmentation,but have better effects than those of PSPNet,SegNet,UNet,and DeepLabV3+,the traditional networks.As for tongue color classification,the proposed network,TCCNet,had better F1-Score and mAP values as compared with other neural networks such as VGG16 and GoogLeNet. 展开更多
关键词 Tongue image analysis Tongue image segmentation Tongue color classification Deep learning Convolutional neural network Snake model Atrous convolution
下载PDF
A Novel Approach for Unsupervised Segmentation of Homogeneous Regions in Gray-scale Images
5
作者 王郁中 杨杰 +1 位作者 周大可 郑元杰 《Journal of Donghua University(English Edition)》 EI CAS 2004年第3期123-129,共7页
An improved approach for JSEG is presented for unsupervised segmentation of homogeneous regions in gray-scale images. Instead of intensity quantization, an automatic classification method based on scale space-based cl... An improved approach for JSEG is presented for unsupervised segmentation of homogeneous regions in gray-scale images. Instead of intensity quantization, an automatic classification method based on scale space-based clustering is used for nonparametric clustering of image data set. Then EM algorithm with classification achieved by space-based classification scheme as initial data used to achieve Gaussian mixture modelling of image data set that is utilized for the calculation of soft J value. Original region growing algorithm is then used to segment the image based on the multiscale soft J-images. Experiments show that the new method can overcome the limitations of JSEG successfully. 展开更多
关键词 JSEG scale space-based clustering Gaussian mixture modelling EM algorithm Soft J value
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部