The conventional photoelectric detection system requires complex circuitry and spectroscopic systems as well as specialized personnel for its operation.To replace such a system,a method of measuring turbidity using a ...The conventional photoelectric detection system requires complex circuitry and spectroscopic systems as well as specialized personnel for its operation.To replace such a system,a method of measuring turbidity using a camera is proposed by combining the imaging characteristics of a digital camera and the high-speed information processing capability of a computer.Two turbidity measurement devices based on visible and near-infrared(NIR)light cameras and a light source driving circuit with constant light intensity were designed.The RGB data in the turbidity images were acquired using a self-developed image processing software and converted to the CIE Lab color space.Based on the relationship between the luminance,chromatic aberration,and turbidity,the turbidity detection models for luminance and chromatic aberration of visible and NIR light devices exhibiting values from 0-1000 NTU,less than 100 NTU,and more than 100 NTU were established.By comparing and analyzing the proposed models,the two measurement models with the best all-around performance were selected and fused to generate new measurement models.The experimental results prove that the correlation between the three models and the commercial turbidity meter measurements exhibite a significance value higher than 0.999.The error of the fusion model is within 1.05%,with a mean square error of 1.14.The visible light device has less error at low turbidity measurements and is less influenced by the color of the image.The NIR light device is more stable and accurate at full range and high turbidity measurements and is therefore more suitable for such measurements.展开更多
In the three-dimensional(3D) contour measurement,the phase shift profilometry(PSP) method is the most widely used one.However,the measurement speed of PSP is very low because of the multiple projections.In order to im...In the three-dimensional(3D) contour measurement,the phase shift profilometry(PSP) method is the most widely used one.However,the measurement speed of PSP is very low because of the multiple projections.In order to improve the measurement speed,color grating stripes are used for measurement in this paper.During the measurement,only one color sinusoidal fringe is projected on the measured object.Therefore,the measurement speed is greatly improved.Since there is coupling or interference phenomenon between the adjacent color grating stripes,a color correction method is used to improve the measurement results.A method for correcting nonlinear error of measurement system is proposed in this paper,and the sinusoidal property of acquired image after correction is better than that before correction.Experimental results show that with these correction methods,the measurement errors can be reduced.Therefore,it can support a good foundation for the high-precision 3D reconstruction.展开更多
基金National Natural Science Foundation of China(No.61671434)Key Projects of Provincial Natural Science Foundation of Anhui Universities(Nos.KJ2019A0952,KJ2017ZD32)。
文摘The conventional photoelectric detection system requires complex circuitry and spectroscopic systems as well as specialized personnel for its operation.To replace such a system,a method of measuring turbidity using a camera is proposed by combining the imaging characteristics of a digital camera and the high-speed information processing capability of a computer.Two turbidity measurement devices based on visible and near-infrared(NIR)light cameras and a light source driving circuit with constant light intensity were designed.The RGB data in the turbidity images were acquired using a self-developed image processing software and converted to the CIE Lab color space.Based on the relationship between the luminance,chromatic aberration,and turbidity,the turbidity detection models for luminance and chromatic aberration of visible and NIR light devices exhibiting values from 0-1000 NTU,less than 100 NTU,and more than 100 NTU were established.By comparing and analyzing the proposed models,the two measurement models with the best all-around performance were selected and fused to generate new measurement models.The experimental results prove that the correlation between the three models and the commercial turbidity meter measurements exhibite a significance value higher than 0.999.The error of the fusion model is within 1.05%,with a mean square error of 1.14.The visible light device has less error at low turbidity measurements and is less influenced by the color of the image.The NIR light device is more stable and accurate at full range and high turbidity measurements and is therefore more suitable for such measurements.
基金supported by the National Natural Science Foundation of China(Nos.60808020 and 61078041)the National Science and Technology Support(No.2014BAH03F01)+1 种基金the Tianjin Research Program of Application Foundation and Advanced Technology(No.10JCYBJC07200)the Technology Program of Tianjin Municipal Education Commission(No.20130324)
文摘In the three-dimensional(3D) contour measurement,the phase shift profilometry(PSP) method is the most widely used one.However,the measurement speed of PSP is very low because of the multiple projections.In order to improve the measurement speed,color grating stripes are used for measurement in this paper.During the measurement,only one color sinusoidal fringe is projected on the measured object.Therefore,the measurement speed is greatly improved.Since there is coupling or interference phenomenon between the adjacent color grating stripes,a color correction method is used to improve the measurement results.A method for correcting nonlinear error of measurement system is proposed in this paper,and the sinusoidal property of acquired image after correction is better than that before correction.Experimental results show that with these correction methods,the measurement errors can be reduced.Therefore,it can support a good foundation for the high-precision 3D reconstruction.