期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Exploiting global and local features for image retrieval 被引量:3
1
作者 LI Li FENG Lin +2 位作者 WU Jun SUN Mu-xin LIU Sheng-lan 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第2期259-276,共18页
Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color... Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color space put more emphasis on color than texture feature;2)the methods extract several features respectively and combine them into a vector,in which bad features may lead to worse performance after combining directly good and bad features.To address the problems above,a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision.The bag-of-visual words(BoW)models and color intensity-based local difference patterns(CILDP)are exploited to capture local and global features of an image.The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method.The performance of our proposed framework in terms of average precision on Corel-1K database is86.26%,and it improves the average precision by approximately6.68%and12.53%over CILDP and BoW,respectively.Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval. 展开更多
关键词 local binary patterns hue saturation value (HSV) color space graph fusion image retrieval
下载PDF
基于HSV的烤烟叶片青杂检测研究
2
作者 李更新 臧传江 +8 位作者 赵湘江 王德权 董玉双 古明光 高阳 谭新伟 苗壮 赵溪清 李阳 《农学学报》 2024年第11期1-6,共6页
为研究烟叶收购过程中快速高效的青杂检测方法,以山东诸城烟叶收购中的青杂检测为研究背景,以提升青杂检测的自动化和高效能为目的,分别对含青烟叶样本、含杂烟叶样本和合格烟叶样本进行数据采集,结合图像识别技术,进行烤烟青杂检测的... 为研究烟叶收购过程中快速高效的青杂检测方法,以山东诸城烟叶收购中的青杂检测为研究背景,以提升青杂检测的自动化和高效能为目的,分别对含青烟叶样本、含杂烟叶样本和合格烟叶样本进行数据采集,结合图像识别技术,进行烤烟青杂检测的样本处理和主流检测手段优劣性剖析。利用256段波段高光谱相机获取数据信息,通过调取RGB波段映射RGB颜色空间,进而转换为HSV颜色空间进行叶片含青、含杂率检测。结果显示,通过大量实验测量,获得青杂的HSV颜色色域范围,精确给出青杂色的像素点数,进而给出烤烟叶片青含杂比例。待测烤烟的含青、含杂像素点的精确标注给出可视化的检测结果,结合烟叶RGB图像,使得算法的青杂检测具有较强的可解释性。研究发现,基于高光谱数据和HSV颜色空间的自动化烟叶青杂检测方法,青杂检测算法执行时延在4s左右,在青杂检测准确率方面已经满足烟叶收购需求。 展开更多
关键词 色调-饱和度-明度 高光谱 青杂检测 机器视觉 自动化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部