In this study, high-pressure hydrothermal processing of different biomass sources and products, which include cellulose, xylan, lignin, pine wood, paper waste, and waste lignin was performed at 200-275 ℃ in presence ...In this study, high-pressure hydrothermal processing of different biomass sources and products, which include cellulose, xylan, lignin, pine wood, paper waste, and waste lignin was performed at 200-275 ℃ in presence of NiSO4 catalyst. Biomass slurry was prepared in distilled water containing NiSO4, loaded in a high-temperature high-pressure reactor and heated to different temperatures. The reaction was continued for 120 min and during the reaction gas samples were withdrawn and analyzed using Chrompack capillary column on the gas chromatograph equipped with thermal conductivity detector. The analysis of gas samples revealed the presence of H2, CO2, CO, and CH4 gases. Increase in catalyst concentration from 3 wt% to 10 wt% has significantly increased the H2 generation. Absence of catalyst, however, generated almost negligible amount of H2. Among the biomass sources and products investigated here, xylan has yielded maximum amount of H2. The liquid samples were analyzed by high-performance liquid chromatography (HPLC) and Fourier transform infrared (FTIR) spectroscopy which revealed the presence of sugars along with the other intermediates.展开更多
In proteomics, attention has focused on various immobilized enzyme reactors (IMERs) for the realization of high throughput digestion. In this report, a novel organic-inorganic hybrid monolith based IMER was prepared i...In proteomics, attention has focused on various immobilized enzyme reactors (IMERs) for the realization of high throughput digestion. In this report, a novel organic-inorganic hybrid monolith based IMER was prepared in a 100 μm i.d. capillary with 3-glycidoxypropyltrimethoxysilane (GLYMO) as the monomer and tetraethoxysilane (TEOS) as the crosslinker. Trypsin immobilization was achieved via the reaction between vicinal diol groups, which were obtained from hydrolysis of epoxy groups, and the amino groups of trypsin. Bovine serum albumin was digested thoroughly by this IMER in 47 s. After micro-reverse phase liquid chromatography-tandem mass spectrometry (μRPLC-MS/MS) analysis and database searching, beyond 35% sequence coverage was obtained, and the result was comparable to that of 12 h in solution digestion. The present IMER has potential for high throughput digestion.展开更多
文摘In this study, high-pressure hydrothermal processing of different biomass sources and products, which include cellulose, xylan, lignin, pine wood, paper waste, and waste lignin was performed at 200-275 ℃ in presence of NiSO4 catalyst. Biomass slurry was prepared in distilled water containing NiSO4, loaded in a high-temperature high-pressure reactor and heated to different temperatures. The reaction was continued for 120 min and during the reaction gas samples were withdrawn and analyzed using Chrompack capillary column on the gas chromatograph equipped with thermal conductivity detector. The analysis of gas samples revealed the presence of H2, CO2, CO, and CH4 gases. Increase in catalyst concentration from 3 wt% to 10 wt% has significantly increased the H2 generation. Absence of catalyst, however, generated almost negligible amount of H2. Among the biomass sources and products investigated here, xylan has yielded maximum amount of H2. The liquid samples were analyzed by high-performance liquid chromatography (HPLC) and Fourier transform infrared (FTIR) spectroscopy which revealed the presence of sugars along with the other intermediates.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20935004 and 20775080)National Basic Research Program of China (Grant No. 2007CB914100)Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2YW.H09)
文摘In proteomics, attention has focused on various immobilized enzyme reactors (IMERs) for the realization of high throughput digestion. In this report, a novel organic-inorganic hybrid monolith based IMER was prepared in a 100 μm i.d. capillary with 3-glycidoxypropyltrimethoxysilane (GLYMO) as the monomer and tetraethoxysilane (TEOS) as the crosslinker. Trypsin immobilization was achieved via the reaction between vicinal diol groups, which were obtained from hydrolysis of epoxy groups, and the amino groups of trypsin. Bovine serum albumin was digested thoroughly by this IMER in 47 s. After micro-reverse phase liquid chromatography-tandem mass spectrometry (μRPLC-MS/MS) analysis and database searching, beyond 35% sequence coverage was obtained, and the result was comparable to that of 12 h in solution digestion. The present IMER has potential for high throughput digestion.