In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
The entropy increase (EI) and the entropy increase per unit time (EIPUT) of the solute zone are chosen as new criteria of separation efficiency in chromatography and electrophoresis. It is verified by grand canonical ...The entropy increase (EI) and the entropy increase per unit time (EIPUT) of the solute zone are chosen as new criteria of separation efficiency in chromatography and electrophoresis. It is verified by grand canonical ensemble (GCE) that the kinetic energy distribution of the solute is a common characteristic of the entropy and the distribution of solute zones.Under the assumptions. EI of the solute system is directly proportional to the logarithm of the difference between one and one half of the substantial separation ratio. the ratio of moles of a sparated solute to its total moles. and EIPUT is direchy proportional to corrected separation rate of separation system. EI or EIPUT is a important bridge between separation efficiency of chromatography or electrophoresis and operating parameters, especially. when nonequilibriumthermodynamics(NET) would be adopted.展开更多
Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction te...Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction temperature reduces compared with that under normal pressure, and the preferential order of products is Al404C, Al4C3, Al2OC, Al20 and A1. Experiment results show that the carbothermic reduction products of alumina are A1404C and A14C3, and neither A12OC, Al20 or Al was found. During the carbothermic reduction process, the reaction rate of Al203 and carbon decreases gradually with increasing time. Meanwhile, lower system pressure or higher temperature is beneficial to the carbothermic reduction of alumina process. A1404C is firstly formed in the carbothermic reaction, and then A14C3 is formed in lower system pressure or at higher temperature.展开更多
The diffusion behavior of particles in the chromatography is a fundamental issue of chromatographic dynamics. The understanding of the diffusion behaviors is particularly critical to optimize the operation conditions,...The diffusion behavior of particles in the chromatography is a fundamental issue of chromatographic dynamics. The understanding of the diffusion behaviors is particularly critical to optimize the operation conditions, improve the chromatographic performance and design a new separation device. Many of the present simulations focus on chromatographic thermodynamics, and very few aim at the overall diffusion and separation process. In order to dynamically trace the trajectory of the diffusing particles and to perform simulations of the whole chromatographic process, we have developed a model based on the framework of random walk in the restricted space and performed the simulation of a single particle diffusion in the gas chromatography. The simulation parameters were determined by comparing with the experimental data. The elution profiles of n-alkanes under different flow rates were accurately simulated with the method. The results show that the relative difference between the measures and the simulations are less than 2% and 10% for the retention time and the peak width, respectively. The simulation method shows great significance for the optimization of separation conditions and the development of novel technologies of chromatographic separation.展开更多
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
文摘The entropy increase (EI) and the entropy increase per unit time (EIPUT) of the solute zone are chosen as new criteria of separation efficiency in chromatography and electrophoresis. It is verified by grand canonical ensemble (GCE) that the kinetic energy distribution of the solute is a common characteristic of the entropy and the distribution of solute zones.Under the assumptions. EI of the solute system is directly proportional to the logarithm of the difference between one and one half of the substantial separation ratio. the ratio of moles of a sparated solute to its total moles. and EIPUT is direchy proportional to corrected separation rate of separation system. EI or EIPUT is a important bridge between separation efficiency of chromatography or electrophoresis and operating parameters, especially. when nonequilibriumthermodynamics(NET) would be adopted.
基金Project(U0837604) supported by the Natural Science Foundation of Yunnan Province,ChinaProject(Jinchuan 201114) supported by the Pre Research Foundation of Jinchuan Group Ltd.,ChinaProject(2011148) supported by the Analysis and Testing Funds of Kunming University of Science and Technology,China
文摘Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction temperature reduces compared with that under normal pressure, and the preferential order of products is Al404C, Al4C3, Al2OC, Al20 and A1. Experiment results show that the carbothermic reduction products of alumina are A1404C and A14C3, and neither A12OC, Al20 or Al was found. During the carbothermic reduction process, the reaction rate of Al203 and carbon decreases gradually with increasing time. Meanwhile, lower system pressure or higher temperature is beneficial to the carbothermic reduction of alumina process. A1404C is firstly formed in the carbothermic reaction, and then A14C3 is formed in lower system pressure or at higher temperature.
基金supported by the National Natural Science Foundation of China (21273113)
文摘The diffusion behavior of particles in the chromatography is a fundamental issue of chromatographic dynamics. The understanding of the diffusion behaviors is particularly critical to optimize the operation conditions, improve the chromatographic performance and design a new separation device. Many of the present simulations focus on chromatographic thermodynamics, and very few aim at the overall diffusion and separation process. In order to dynamically trace the trajectory of the diffusing particles and to perform simulations of the whole chromatographic process, we have developed a model based on the framework of random walk in the restricted space and performed the simulation of a single particle diffusion in the gas chromatography. The simulation parameters were determined by comparing with the experimental data. The elution profiles of n-alkanes under different flow rates were accurately simulated with the method. The results show that the relative difference between the measures and the simulations are less than 2% and 10% for the retention time and the peak width, respectively. The simulation method shows great significance for the optimization of separation conditions and the development of novel technologies of chromatographic separation.