Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral s...Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral space by many researchers. In this paper we point out that white noise on an oscillation system can also lead to a similar inverse power law in the corresponding displacement spectrum, implying that the – 4 power law for the equilibrium range of wind wave spectra may probably only reflect the randomicity of the wind waves rather than any other dynamical processes in physical space. This explanation may shed light on the mechanism of other physical processes with spectra also showing an inverse power law, such as isotropic turbulence, internal waves, etc.展开更多
[ Objective] The aim was to establish a method for the determination of Rhodamine B in food by HPLC-UV. [ Metkod] Rhodamine B was extracted with acetone/hexane from food samples. After concentrated and purified by alu...[ Objective] The aim was to establish a method for the determination of Rhodamine B in food by HPLC-UV. [ Metkod] Rhodamine B was extracted with acetone/hexane from food samples. After concentrated and purified by alumina cartridge, the Rhodamine B content in the food was determined by using high performance liquid chromatography with ultraviolet visible detector. [ Result] Within tile concentration range of 0.005 - 2.000 mg/kg, the peak area of Rhodamine B presented good linear relation with the concentration, and the related coefficient was 0.999 98. With high average recovery rate, the detection limit of the method was 0.005 mg/kg[ Concision] It is a fast and accurate method with high sensitivity to detect Rhodamine B in food.展开更多
We developed an HPLC method for analysis of the monosaccharide composition of fucoidans. The fucoidan was hydrolyzed into monosaccharides with 2 mol/L trifluoroacetic acid. Using ribose as the internal standard, the m...We developed an HPLC method for analysis of the monosaccharide composition of fucoidans. The fucoidan was hydrolyzed into monosaccharides with 2 mol/L trifluoroacetic acid. Using ribose as the internal standard, the monosaecharide derivatives, obtained with 1-Phenyl-3-methyl-5- pyrazolone (PMP), were separated by reverse-phase HPLC using a gradient elution process, and monitored by ultraviolet detection at 245 nm. In the concentration range of 0.1-2.0 mmol/L, the peak area of each monosaccharide had a good linear relationship with its concentration (r^2〉0.998). The average recoveries of mannose, rhamnose, glucuronic acid, glucose, galactose, xylose, and fucose were 86.2%, 95.1%, 62.5%, 102.0%, 94.8%, 66.6%, and 105.1%, respectively. This method was accurate and had good reproducibility and could be used to determine the monosaccharide contents of fucoidans.展开更多
基金This study was financially supported by the National Natural Science Foundation of China (Grant No. 40406008)the Foundation for 0pen Projects of the Key Lab of Physical 0ceanography, the Ministry of Education, China (Grant No. 200309).
文摘Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral space by many researchers. In this paper we point out that white noise on an oscillation system can also lead to a similar inverse power law in the corresponding displacement spectrum, implying that the – 4 power law for the equilibrium range of wind wave spectra may probably only reflect the randomicity of the wind waves rather than any other dynamical processes in physical space. This explanation may shed light on the mechanism of other physical processes with spectra also showing an inverse power law, such as isotropic turbulence, internal waves, etc.
文摘[ Objective] The aim was to establish a method for the determination of Rhodamine B in food by HPLC-UV. [ Metkod] Rhodamine B was extracted with acetone/hexane from food samples. After concentrated and purified by alumina cartridge, the Rhodamine B content in the food was determined by using high performance liquid chromatography with ultraviolet visible detector. [ Result] Within tile concentration range of 0.005 - 2.000 mg/kg, the peak area of Rhodamine B presented good linear relation with the concentration, and the related coefficient was 0.999 98. With high average recovery rate, the detection limit of the method was 0.005 mg/kg[ Concision] It is a fast and accurate method with high sensitivity to detect Rhodamine B in food.
基金Supported by the Key Technology Research & Development Program of Shandong Province (No 2007GG1005007)
文摘We developed an HPLC method for analysis of the monosaccharide composition of fucoidans. The fucoidan was hydrolyzed into monosaccharides with 2 mol/L trifluoroacetic acid. Using ribose as the internal standard, the monosaecharide derivatives, obtained with 1-Phenyl-3-methyl-5- pyrazolone (PMP), were separated by reverse-phase HPLC using a gradient elution process, and monitored by ultraviolet detection at 245 nm. In the concentration range of 0.1-2.0 mmol/L, the peak area of each monosaccharide had a good linear relationship with its concentration (r^2〉0.998). The average recoveries of mannose, rhamnose, glucuronic acid, glucose, galactose, xylose, and fucose were 86.2%, 95.1%, 62.5%, 102.0%, 94.8%, 66.6%, and 105.1%, respectively. This method was accurate and had good reproducibility and could be used to determine the monosaccharide contents of fucoidans.