The one-year-old seedlings of Blumea balsamifera (L.) DC. were applied with CaCl2.H2O that supplied Ca in slow growth period of winter three times. The heights, ground diameters, leaf lengths, leaf widths and biomas...The one-year-old seedlings of Blumea balsamifera (L.) DC. were applied with CaCl2.H2O that supplied Ca in slow growth period of winter three times. The heights, ground diameters, leaf lengths, leaf widths and biomasses of B. balsamifera plants were measured. In addition, the relative contents of total flavones in different parts of B. balsamifera were determined by UV spectrophotometry, and the absolute contents of total flavones were calculated. The relative contents of L-borneol in leaves of B. balsamifera were determined by GC, and the absolute contents of L- borneol were calculated. The results showed that calcium element significantly in- creased the biomasses in leaves, stems and roots of B. balsamifera in slow growth period of winter. The leaf biomass of B. balsamifera in the 5 g/L CaCl2-H2O treat- ment group was significantly higher than those in the other three treatment groups. The leaf biomasses of B. balsamifera in the 10 and 15 g/L CaCl2.H2O treatment groups were significantly higher than that in the CK, with 3.03 and 2.65 times, re- spectively. The application of Ca inhibited the accumulation of total flavones relative contents, but significantly increased the total flavones absolute contents in different parts of B. balsamifera. The relative and absolute contents of L-borneol in the 5 g/L CaCl2 .H2O treatment group were 0.22% and 0.22 g, which were increased by 37.50%, 22.22%, 37.50% and 100%, 100%, 450%, respectively compared with those in the 0, 10 and 15 g/L CaCl2.H2O treatment groups. The Ca element could signifi- cantly promote the accumulation of biomasses in leaves, stems and roots, as well as the absolute contents of total flavones and L-borneol in B. balsamifera in slow growth period of winter.展开更多
To search for the protective actions of blumea flavanones (BFs) on hepatocytes and hepatic subcellular organelle against lipid peroxidation, monkey′s hepatocytes were isolated and cultured with or without blumea flav...To search for the protective actions of blumea flavanones (BFs) on hepatocytes and hepatic subcellular organelle against lipid peroxidation, monkey′s hepatocytes were isolated and cultured with or without blumea flavanones, then damaged by FeSO 4 cysteine or CCl 4. The lipid peroxidation (malondialdehyde production) and alteration in hepatocyte membrane (leakage of GPT) were estimated. Hepatic subcellular organelles were also isolated and incubated with or without blumea flavanones, then injured by FeSO 4 ascorbate. The generation of malondialdehyde(MDA) was measured. It was found that BFs 10 and 100 μmol·L 1 inhibited the MDA generation and GPT (glutamic pyruvic transaminase) leakage out of hepatocytes that were induced by CCl 4 or FeSO 4 cysteine. BFs could prevent lipid peroxidation initiated by FeSO 4 ascorbate in subcellular organelle suspension. Among BFs, BF 2 possessed the strongest activity. Conclusion: Blumea flavanones possess antioxidation activities that protect monkey′s hepatocytes and hepatic subcellular organelle against injuries induced by FeSO4 or CCl 4.展开更多
基金Supported by National Natural Science Foundation of China(8140303581374065)~~
文摘The one-year-old seedlings of Blumea balsamifera (L.) DC. were applied with CaCl2.H2O that supplied Ca in slow growth period of winter three times. The heights, ground diameters, leaf lengths, leaf widths and biomasses of B. balsamifera plants were measured. In addition, the relative contents of total flavones in different parts of B. balsamifera were determined by UV spectrophotometry, and the absolute contents of total flavones were calculated. The relative contents of L-borneol in leaves of B. balsamifera were determined by GC, and the absolute contents of L- borneol were calculated. The results showed that calcium element significantly in- creased the biomasses in leaves, stems and roots of B. balsamifera in slow growth period of winter. The leaf biomass of B. balsamifera in the 5 g/L CaCl2-H2O treat- ment group was significantly higher than those in the other three treatment groups. The leaf biomasses of B. balsamifera in the 10 and 15 g/L CaCl2.H2O treatment groups were significantly higher than that in the CK, with 3.03 and 2.65 times, re- spectively. The application of Ca inhibited the accumulation of total flavones relative contents, but significantly increased the total flavones absolute contents in different parts of B. balsamifera. The relative and absolute contents of L-borneol in the 5 g/L CaCl2 .H2O treatment group were 0.22% and 0.22 g, which were increased by 37.50%, 22.22%, 37.50% and 100%, 100%, 450%, respectively compared with those in the 0, 10 and 15 g/L CaCl2.H2O treatment groups. The Ca element could signifi- cantly promote the accumulation of biomasses in leaves, stems and roots, as well as the absolute contents of total flavones and L-borneol in B. balsamifera in slow growth period of winter.
文摘To search for the protective actions of blumea flavanones (BFs) on hepatocytes and hepatic subcellular organelle against lipid peroxidation, monkey′s hepatocytes were isolated and cultured with or without blumea flavanones, then damaged by FeSO 4 cysteine or CCl 4. The lipid peroxidation (malondialdehyde production) and alteration in hepatocyte membrane (leakage of GPT) were estimated. Hepatic subcellular organelles were also isolated and incubated with or without blumea flavanones, then injured by FeSO 4 ascorbate. The generation of malondialdehyde(MDA) was measured. It was found that BFs 10 and 100 μmol·L 1 inhibited the MDA generation and GPT (glutamic pyruvic transaminase) leakage out of hepatocytes that were induced by CCl 4 or FeSO 4 cysteine. BFs could prevent lipid peroxidation initiated by FeSO 4 ascorbate in subcellular organelle suspension. Among BFs, BF 2 possessed the strongest activity. Conclusion: Blumea flavanones possess antioxidation activities that protect monkey′s hepatocytes and hepatic subcellular organelle against injuries induced by FeSO4 or CCl 4.