The effects of four kinds of plant growth regulators with different concentrations on narcissi were studied in 2001. The results showed that the regulators could inhibit the growths of height and leaves of narcissi. O...The effects of four kinds of plant growth regulators with different concentrations on narcissi were studied in 2001. The results showed that the regulators could inhibit the growths of height and leaves of narcissi. Of the four regulators, the dwarfing effects of paclobatrazol (PP333) and uniconazole (S3307) on narcissi were better than those of chlorocholine (CCC) and dimethyl amino-sussinamic acid (B9). All of the regulators did not have significant effect on the root length. Moreover, the time of flowering was later for the narcissi treated with regulators than that of the control to a certain extent, and the range delayed was from 2 days to 19 days. The correlation analysis results showed that there was a significant correlation between the time of flowering and the concentrations of regulators. The ornament value of narcissi was obviously improved by using the regulators.展开更多
A stdudy was conducted to determine the seasonal changes of soil respiration and the contribution of root respiration to soil respiration in Betula plaophylla forest in Changbai Mountain from May to September in 2004....A stdudy was conducted to determine the seasonal changes of soil respiration and the contribution of root respiration to soil respiration in Betula plaophylla forest in Changbai Mountain from May to September in 2004. Results indicated that the total soil respiration, root-severed soil respiration and the root respiration followed a similar seasonal trend, with a high rate in summer due to wet and high temperature and a low rate in spring and autumn due to lower temperature. The mean rates of total soil respiration, root-severed soil respiration and root respiration were 4.44, 2.30 and 2.14 μmol.m^-2.s^-1, respectively during the growing season, and they were all exponentially correlated with temperature. Soil respiration rate had a linear correlation with soil volumetric moisture. The Q10 values for total soil respiration, root-severed soil respiration and root respiration were 2,82, 2.59 and 3. 16, respectively. The contribution rate of root respiration to the total soil respiration was between 29.3% and 58.7% during the growing season, indicating that root is a major component of soil respiration. The annual mean rates of total soil respiration, root-severed soil respiration and root respiration were 1.96, 1.08, and 0.87 μmol.m^-2.s^-1, or 741.73 408.71, and 329.24 g.m^-2.a^-1, respectively. Root respiration contributed 44.4% to the annual total soil respiration. The relationship proposed for soil respiration with soil lemperature was useful for understanding and predicting potential changes in Changbai Mountain B. platyphylla forest ecosystem in response to forest management and climate change.展开更多
Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,includ...Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,including the soil moisture content,sea surface temperature,500 hPa geopotential height,and sea level pressure in the preceding spring for the period 1981-2008.Two spring predictors were used to construct the seasonal prediction model:the area mean soil moisture content in Northwest Eurasia and the 500 hPa geopotential height over Northeast China.Both the cross-validation and comparison with previous studies showed that the above two predictors have good predicting ability for the summer rainfall in Northeast China.展开更多
Based on the Pathfinder sea surface temperature(PFSST),the surface axis and its pattern of the Yellow Sea Warm Current(YSWC) are discussed.A structure of double-warm-tongue is found in February and it varies in differ...Based on the Pathfinder sea surface temperature(PFSST),the surface axis and its pattern of the Yellow Sea Warm Current(YSWC) are discussed.A structure of double-warm-tongue is found in February and it varies in different years.Two indexes are calculated to represent the westward shift(WSI) and northward extension(NEI) of the warm water in the Yellow Sea(YS).Wavelet analysis illustrates that the WSI and NEI have prominent periods of 3-6 years and 3-4 years,respectively.The Empirical Orthogonal Function(EOF) decomposition is applied to the winter wind stress curl and the Kuroshio Current(KC) transport,which are believed to play important roles in forcing the variability of the YSWC surface axis.Statistics shows that the WSI is significantly related with the second EOF mode of the wind stress curl in February,which may force the YSWC surface axis moving westward and maintaining the double warm tongues because of its opposite curl in the YSWC domain.The first EOF mode of wind stress curl in January is propitious for inducing the warm tongue in the YS to advance more northward.Hence,the wind stress curls both in January and in February could force variations of the YSWC surface axis;however,the effect of the January wind stress curl is relatively weaker than that of the February.The relationship between the NEI and the KC transport is remarkable,and it seems that the stronger KC supplies more power to push the YSWC northward against the southward wind.展开更多
A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4 emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season...A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4 emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season. CH4 emission factors were used to estimate the CH4 emissions from year-round flooded rice fields during the rice-growing season in China. The CH4 emissions for the year-round flooded rice fields in China for the rice growing season over a total area of 2.66 Mha were estimated to be 2.44 Tg CH…展开更多
We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in t...We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in the precipitation regime had a positive trend for the warm seasons(April-October),but weakly positive or negative trends for the cold seasons(November-March). It was found that these changes correspond to the decreasing contribution of "Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and East zonal(Nm-Ez)" circulation groups and to the increasing contribution of "West zonal and Southern meridional(Wz-Sm)" circulation groups,accordingly to the Dzerdzeevskii classification. In addition,it was found that the variation of precipitation has a step change point in 1980. For the warm seasons,the precipitation change at this point is associated with the reduced influence of "West zonal(Wz)","Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and Southern meridional(Nm-Sm)" circulation groups. For the cold seasons,a substantialincrease of "Wz-Sm" and a decrease of "Nm-Sa","Nm-Ez" circulation groups are responsible for the precipitation change in the two time periods(1959-1980 and 1981-2014).展开更多
Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetland. Poyang Lake, the largest freshwater lake in China, has been encountering dra...Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetland. Poyang Lake, the largest freshwater lake in China, has been encountering dramatic changes in hydrological conditions in last decade, which greatly influenced the wetland vegetations. To explore the relationships between hydrology and vegetation distri- bution, water-table depth, soil moisture, species composition, diversity and biomass were measured at a seasonally flooded wetland section at Wucheng National Nature Reserve. Three plant communities, Artemisia capillaris, Phragmites australis and Carex cineras- cens communities, were examined which are zonally distributed from upland to lakeshore with decreasing elevation. Canonical corre- spondence analysis (CCA), spearmen correlation and logistic regression were adopted to analyze the relationships between vegetation characteristics and hydrological variables of water-table depth and soil moisture. Results show that significant hydrological gradient exist along the wetland transect. Water-table demonstrates a seasonal variation and is consistently deepest in A. capillaris community (ranging from q).5 m above ground to +10.3 m below ground), intermediate in P. australis community (-2.6 m to +7.8 m) and shallow- est in C. cinerascens community (-4.5 m to +6.1 m). Soil moisture is lowest and most variable in A. capillaris community, highest and least variable in P. australis community, and intermediate and moderate variable in C. cinerascens community. The CCA ordination indicated that variables of water-table depth and soil moisture are strongly related to community distribution, which explained 81.7% of the vegetation variations. Species diversity indices are significantly positively correlated with soil moisture and negatively correlated with moisture variability, while above- and belowground biomass are positively correlated with moisture. Above- and belowground biomass present Gaussian models along the gradient of average water-table depth in growing season, while species diversity indices show bimodal patterns. The optimal average water-table depths for above- and belowground biomass are 0.8 m and 0.5 m, respectively, and are 2.2 m and 2.4 m for species richness and Shannon-Wiener indices, respectively. Outcomes of this work improved the under- standings of the relationship between hydrology and vegetation.展开更多
The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the...The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the constraints of the real time cold loads and system running is also proposed. It can make the minimum cost of the system by optimizing the number of running chillers, running parameters and the distribution of real time loads of running chillers. The improved genetic algorithm is used in the optimum scheduling scheme. The computation results show that the building energy consumption can be decreased by about 10%.展开更多
A whole year analysis of riverine dissolved organic carbon (DOC) concentrations in the Xijiang River (XJR), South China, showed that the mean riverine DOC concentration (1.24 mg L-1) in the XJR was notably lower than ...A whole year analysis of riverine dissolved organic carbon (DOC) concentrations in the Xijiang River (XJR), South China, showed that the mean riverine DOC concentration (1.24 mg L-1) in the XJR was notably lower than the averaged value (5.75 mg L-1) of the global riverine DOC concentration in several major rivers. There is an inconspicuous monthly fluctuation of the DOC signal in the XJR, but on a semi-yearly time scale, however, the riverine DOC concentration had significant difference between hydrological seasons. The DOC level during the flood season (1.18 mg L-1) was less than that during the non-flood season (1.40 mg L-1). Owing to the concomitance of the flushing and dilution effects of the runoff during the high-water period, the variation of riverine DOC concentration with discharge in the XJR differed from that reported in many other major rivers. The DOC export flux above the city of Wuzhou was about 0.62× 106 g C km-2 yr-1. The DOC transported during the "056" Massive Flood period comprised 30.35% of the annual total, while the discharge accounted for 36.32% of the total annual flow. The characteristics in riverine DOC concentration in the XJR were attributed to the combined effect of the geomorphologic, monsoon climatic and hydrological processes as well as land-use within the drainage basin.展开更多
Based on HYbrid Coordinate Ocean Model (HYCOM) assimilation and observations, we analyzed seasonal variability of the salinity budget in the southeastern Arabian Sea (AS) and the southern part of the Bay of Bengal (BO...Based on HYbrid Coordinate Ocean Model (HYCOM) assimilation and observations, we analyzed seasonal variability of the salinity budget in the southeastern Arabian Sea (AS) and the southern part of the Bay of Bengal (BOB), as well as water exchange between the two basins. Results show that fresh water flux cannot explain salinity changes in salinity budget of both regions. Oceanic advection decreases salinity in the southeastern AS during the winter monsoon season and increases salinity in the southern BOB during the summer monsoon season. In winter, the Northeast Monsoon Current (NMC) carries fresher water from the BOB westward into the southern AS; this westward advection is confined to 4°-6°N and the upper 180 m south of the Indian peninsula. Part of the less saline water then turns northward, decreasing salinity in the southeastern AS. In summer, the Southwest Monsoon Current (SMC) advects high-salinity water from the AS eastward into the BOB, increasing salinity along its path. This eastward advection of high-salinity water south of the India Peninsula extends southward to 2°N, and the layer becomes shallower than in winter. In addition to the monsoon current, the salinity difference between the two basins is important for salinity advection.展开更多
Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential heigh...Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential height field, outgoing longwave radiation (OLR) field, sea surface temperature (SST) and fourteen indexes of general circulation depicting atmosphere activity at high, middle and low latitutes. Being multiple tools of information, a number of conceptual models are formulated that are useful for prediction of the magnitude of monthly precipitation (drought, flood and normal conditionss).展开更多
The purpose of this study is to gain understanding of the relationshi p between ejaculation and serum testosterone level in men. The serum testosteron e concentrations of 28 volunteers were investigated daily during a...The purpose of this study is to gain understanding of the relationshi p between ejaculation and serum testosterone level in men. The serum testosteron e concentrations of 28 volunteers were investigated daily during abstinence peri ods after ejaculation for two phases. The authors found that the fluctuations o f testosterone levels from the 2nd to 5th day of abstinence were minimal. On the 7th day of abstinence, however, a clear peak of serum testosterone appeared, re aching 145.7% of the baseline (P<0.01). No regular fluctuation was observed foll owing continuous abstinence after the peak. Ejaculation is the precondition and beginning of the special periodic serum testosterone level variations, which wou ld not occur without ejaculation. The results showed that ejaculation-caused va r iations were characterized by a peak on the 7th day of abstinence; and that the effective time of an ejaculation is 7 days minimum. These data are the first to document the phenomenon of the periodic change in serum testosterone level; the correlation between ejaculation and periodic change in the serum testosterone le vel, and the pattern and characteristics of the periodic change.展开更多
With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs...With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs play a pivotal role in controlling the spatiotemporal distribution of physical and chemical properties of the stored water, hydrodynamic characteristics are of great importance in understanding biogeochemical cycles in those reservoirs. To further this understanding, a field campaign was conducted in the Wujiangdu Reservoir of Guizhou Province. It was found that from the reservoir inlet to the front of the dam, velocity(v) was negativelycorrelated and had a logarithmic relationship with distance along the ship track(s) under dry-season flow conditions[v =-0.104 ln(s) + 0.4756]. Analysis showed that dryseason flow velocity had no significant correlation with water temperature, p H, or dissolved oxygen(DO). However, when velocity decreased to 0.061 m/s, water depth increased abruptly. In addition, DO displayed a sudden drop and the trend in p H changed from increasing to decreasing, while water temperature showed an opposite trend, indicating the existence of a transition zone from the river to the reservoir.展开更多
The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two lan...The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two land surface models(LSMs) is consistent with the observation, especially in the rainy season. The models reproduce the mean values and seasonality of the energy fluxes of the croplands, despite the obvious underestimated total evaporation. Noah shows the lower deep soil temperature. The net radiation is well simulated for the diurnal time scale. The daytime latent heat fluxes are always underestimated, while the sensible heat fluxes are overestimated to some degree. Compared with Noah, Noah-MP has improved daily average soil heat flux with diurnal variations. Generally, Noah-MP performs fairly well for different landscapes of the HRB. The simulated cold bias in soil temperature is possibly linked with the parameterized partition of the energy into surface fluxes. Thus, further improvement of these LSMs remains a major challenge.展开更多
Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter(SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditio...Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter(SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditions. Freshwater flow was available during post-monsoon and monsoon. An up-estuary shift in the location of estuarine turbidity maxima(ETM) was observed during the transition from post-monsoon to pre-monsoon and further it shifted downstream during the transition from pre-monsoon to monsoon, thereby exhibiting a pronounced seasonal cycle. The salinity intrusion was dependent on the freshwater discharge and was expressed as a power function of freshwater flow, explaining 97% of the variance. The formation of a salt plug in Muthupet estuary and its seasonal dynamics were observed, which is not an identified feature of any of the Indian estuaries studied so far. The geographical positions of salt plug and ETM core were more or less the same during their formation. The occurrence of two ETM during the LW of post-monsoon and the absence of ETM during monsoon explains the strong seasonal variation in the formation of ETM. The primary factor affecting the formation of ETM was identified as the freshwater flow over an annual cycle; the resuspension of sediments by tidal current affecting the formation on a flood/ebb cycle was secondary. The extent of shift of ETM was found to be an inverse logarithmic function of the freshwater discharge. The separation between ETM intrusion and salinity intrusion increased two fold with the increase in ETM intrusion.展开更多
Salt-affected soils are agricultural and environmental problems on a global scale. Plants suffer from saline stresses in these soils and show nitrogen (N) deficiency symptoms. However, halophytes grow soundly under ...Salt-affected soils are agricultural and environmental problems on a global scale. Plants suffer from saline stresses in these soils and show nitrogen (N) deficiency symptoms. However, halophytes grow soundly under saline conditions. In order to clarify the N nutrition of the halophyte Salicornia bigelovii, it was grown at several N levels (1, 2, 3, and 4 mmol L-1), supplied in the form of NO3 or ammonium (NH4+), under high NaCl conditions (200 mmol L-l). NH4^+- fed plants showed better growth than NO3-fed plants at 1-3 mmol L-1N, and plants in both treatments showed the same growth at 4 mmol L-1 N. Nitrogen contents in NO3-fed plants increased with the N concentrations in solution; competitive inhibition of NO3- absorption by Cl- was observed under lower N conditions. In addition, shoot dry weight was significantly correlated only with shoot N content. Therefore, growth of NO3-fed plants was regulated by N absorption. In contrast, N contents of shoots in NH4+-fed plants did not change with N concentration. Shoot Na content decreased with increasing N concentration, while K content increased. Dry weight was highly correlated only with K content in NH4+-fed plants. These observations indicated that growth of NH4+-fed plants was mainly regulated by K absorption.展开更多
In order to evaluate seasonal and regional variations in precipitation in Niigata City, 65 hourly precipitation samples were collected from October 2009 to June 2011 including two snow events. In this work, major ions...In order to evaluate seasonal and regional variations in precipitation in Niigata City, 65 hourly precipitation samples were collected from October 2009 to June 2011 including two snow events. In this work, major ions (Na+, K+, Ca2+, Mg2+, NH4+, SO4^2-, NO3- and Cl-) were combined with tritium (^3H or T) concentration (T specific activity) in both precipitation and snow, and transformation patterns of polluted air mass in Niigata region were revealed. The low level tritium in precipitation was measured by a distillation process and an electrolytic enrichment process. Each tritium concentration in the precipitation sample thus obtained was measured by liquid scintillation counter. On the basis of the above measurement and analysis, it was found that the tritium and nss (non-sea-salt) calcium concentrations showed a seasonal variation with a highest value in spring over one year.展开更多
文摘The effects of four kinds of plant growth regulators with different concentrations on narcissi were studied in 2001. The results showed that the regulators could inhibit the growths of height and leaves of narcissi. Of the four regulators, the dwarfing effects of paclobatrazol (PP333) and uniconazole (S3307) on narcissi were better than those of chlorocholine (CCC) and dimethyl amino-sussinamic acid (B9). All of the regulators did not have significant effect on the root length. Moreover, the time of flowering was later for the narcissi treated with regulators than that of the control to a certain extent, and the range delayed was from 2 days to 19 days. The correlation analysis results showed that there was a significant correlation between the time of flowering and the concentrations of regulators. The ornament value of narcissi was obviously improved by using the regulators.
基金supported by the Knowledge Inno-vation Project of the Chinese Academy of Sciences (KZCX2-YW-416)the National Natural Science Foundation (90411020)
文摘A stdudy was conducted to determine the seasonal changes of soil respiration and the contribution of root respiration to soil respiration in Betula plaophylla forest in Changbai Mountain from May to September in 2004. Results indicated that the total soil respiration, root-severed soil respiration and the root respiration followed a similar seasonal trend, with a high rate in summer due to wet and high temperature and a low rate in spring and autumn due to lower temperature. The mean rates of total soil respiration, root-severed soil respiration and root respiration were 4.44, 2.30 and 2.14 μmol.m^-2.s^-1, respectively during the growing season, and they were all exponentially correlated with temperature. Soil respiration rate had a linear correlation with soil volumetric moisture. The Q10 values for total soil respiration, root-severed soil respiration and root respiration were 2,82, 2.59 and 3. 16, respectively. The contribution rate of root respiration to the total soil respiration was between 29.3% and 58.7% during the growing season, indicating that root is a major component of soil respiration. The annual mean rates of total soil respiration, root-severed soil respiration and root respiration were 1.96, 1.08, and 0.87 μmol.m^-2.s^-1, or 741.73 408.71, and 329.24 g.m^-2.a^-1, respectively. Root respiration contributed 44.4% to the annual total soil respiration. The relationship proposed for soil respiration with soil lemperature was useful for understanding and predicting potential changes in Changbai Mountain B. platyphylla forest ecosystem in response to forest management and climate change.
基金supported by the National Basic Research Program of China under Grants 2010CB950304 and 2009CB421406the Special Fund for the public welfare indus-try (Meteorology) under Grant GYHY200906018+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant KZCX2-YW-QN202the Chinese Academy of Sciences under Grants KZCX2-YW-Q1-02 and KZCX2-YW-Q11-00
文摘Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,including the soil moisture content,sea surface temperature,500 hPa geopotential height,and sea level pressure in the preceding spring for the period 1981-2008.Two spring predictors were used to construct the seasonal prediction model:the area mean soil moisture content in Northwest Eurasia and the 500 hPa geopotential height over Northeast China.Both the cross-validation and comparison with previous studies showed that the above two predictors have good predicting ability for the summer rainfall in Northeast China.
基金Supported by the National Basic Research Program of China (973 Program) (No 2005C B422308)the National High-tech Research and Development Program (863 Program) (No 2006AA09Z149)the China International Science and Technology Cooperation Program (No2006DFB21250)
文摘Based on the Pathfinder sea surface temperature(PFSST),the surface axis and its pattern of the Yellow Sea Warm Current(YSWC) are discussed.A structure of double-warm-tongue is found in February and it varies in different years.Two indexes are calculated to represent the westward shift(WSI) and northward extension(NEI) of the warm water in the Yellow Sea(YS).Wavelet analysis illustrates that the WSI and NEI have prominent periods of 3-6 years and 3-4 years,respectively.The Empirical Orthogonal Function(EOF) decomposition is applied to the winter wind stress curl and the Kuroshio Current(KC) transport,which are believed to play important roles in forcing the variability of the YSWC surface axis.Statistics shows that the WSI is significantly related with the second EOF mode of the wind stress curl in February,which may force the YSWC surface axis moving westward and maintaining the double warm tongues because of its opposite curl in the YSWC domain.The first EOF mode of wind stress curl in January is propitious for inducing the warm tongue in the YS to advance more northward.Hence,the wind stress curls both in January and in February could force variations of the YSWC surface axis;however,the effect of the January wind stress curl is relatively weaker than that of the February.The relationship between the NEI and the KC transport is remarkable,and it seems that the stronger KC supplies more power to push the YSWC northward against the southward wind.
文摘A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4 emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season. CH4 emission factors were used to estimate the CH4 emissions from year-round flooded rice fields during the rice-growing season in China. The CH4 emissions for the year-round flooded rice fields in China for the rice growing season over a total area of 2.66 Mha were estimated to be 2.44 Tg CH…
基金supported by RFBR according to the research project No.16-35-00188 mol_aproject“Climatic and ecological changes in Siberia by the data on glacio-chemical,diatomic and sporepollen analysis of ice-cores”(No.0383-2014-0005)
文摘We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in the precipitation regime had a positive trend for the warm seasons(April-October),but weakly positive or negative trends for the cold seasons(November-March). It was found that these changes correspond to the decreasing contribution of "Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and East zonal(Nm-Ez)" circulation groups and to the increasing contribution of "West zonal and Southern meridional(Wz-Sm)" circulation groups,accordingly to the Dzerdzeevskii classification. In addition,it was found that the variation of precipitation has a step change point in 1980. For the warm seasons,the precipitation change at this point is associated with the reduced influence of "West zonal(Wz)","Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and Southern meridional(Nm-Sm)" circulation groups. For the cold seasons,a substantialincrease of "Wz-Sm" and a decrease of "Nm-Sa","Nm-Ez" circulation groups are responsible for the precipitation change in the two time periods(1959-1980 and 1981-2014).
基金National Natural Science Foundation of China(No.41371062)Collaborative Innovation Center for Major Ecological Security Issues of Jiangxi Province and Monitoring Implementation(No.JXS-EW-00)+1 种基金National Basic Research Program of China(No.2012CB417003)Science Foundation of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(No.NIGLAS2012135001)
文摘Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetland. Poyang Lake, the largest freshwater lake in China, has been encountering dramatic changes in hydrological conditions in last decade, which greatly influenced the wetland vegetations. To explore the relationships between hydrology and vegetation distri- bution, water-table depth, soil moisture, species composition, diversity and biomass were measured at a seasonally flooded wetland section at Wucheng National Nature Reserve. Three plant communities, Artemisia capillaris, Phragmites australis and Carex cineras- cens communities, were examined which are zonally distributed from upland to lakeshore with decreasing elevation. Canonical corre- spondence analysis (CCA), spearmen correlation and logistic regression were adopted to analyze the relationships between vegetation characteristics and hydrological variables of water-table depth and soil moisture. Results show that significant hydrological gradient exist along the wetland transect. Water-table demonstrates a seasonal variation and is consistently deepest in A. capillaris community (ranging from q).5 m above ground to +10.3 m below ground), intermediate in P. australis community (-2.6 m to +7.8 m) and shallow- est in C. cinerascens community (-4.5 m to +6.1 m). Soil moisture is lowest and most variable in A. capillaris community, highest and least variable in P. australis community, and intermediate and moderate variable in C. cinerascens community. The CCA ordination indicated that variables of water-table depth and soil moisture are strongly related to community distribution, which explained 81.7% of the vegetation variations. Species diversity indices are significantly positively correlated with soil moisture and negatively correlated with moisture variability, while above- and belowground biomass are positively correlated with moisture. Above- and belowground biomass present Gaussian models along the gradient of average water-table depth in growing season, while species diversity indices show bimodal patterns. The optimal average water-table depths for above- and belowground biomass are 0.8 m and 0.5 m, respectively, and are 2.2 m and 2.4 m for species richness and Shannon-Wiener indices, respectively. Outcomes of this work improved the under- standings of the relationship between hydrology and vegetation.
文摘The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the constraints of the real time cold loads and system running is also proposed. It can make the minimum cost of the system by optimizing the number of running chillers, running parameters and the distribution of real time loads of running chillers. The improved genetic algorithm is used in the optimum scheduling scheme. The computation results show that the building energy consumption can be decreased by about 10%.
基金supported by the Natural Science Foundation of China (Grant Nos. 40871143 and 41071054)funds of China Geological Survey (karst[2011] Geo-surveying 01-01-23)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Guangdong Provincial Natural Science Foundation of China (Grant No. 7003669)
文摘A whole year analysis of riverine dissolved organic carbon (DOC) concentrations in the Xijiang River (XJR), South China, showed that the mean riverine DOC concentration (1.24 mg L-1) in the XJR was notably lower than the averaged value (5.75 mg L-1) of the global riverine DOC concentration in several major rivers. There is an inconspicuous monthly fluctuation of the DOC signal in the XJR, but on a semi-yearly time scale, however, the riverine DOC concentration had significant difference between hydrological seasons. The DOC level during the flood season (1.18 mg L-1) was less than that during the non-flood season (1.40 mg L-1). Owing to the concomitance of the flushing and dilution effects of the runoff during the high-water period, the variation of riverine DOC concentration with discharge in the XJR differed from that reported in many other major rivers. The DOC export flux above the city of Wuzhou was about 0.62× 106 g C km-2 yr-1. The DOC transported during the "056" Massive Flood period comprised 30.35% of the annual total, while the discharge accounted for 36.32% of the total annual flow. The characteristics in riverine DOC concentration in the XJR were attributed to the combined effect of the geomorphologic, monsoon climatic and hydrological processes as well as land-use within the drainage basin.
基金Supported by the National Basic Research Program of China (973Program) (No. 2010CB950300)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)+1 种基金the Knowledge Innovation Program of Chinese Academy of Sciences(No. KZCX2-YW-BR-04)the National Basic Research Program of China (973 Program) (No. 2012CB955603)
文摘Based on HYbrid Coordinate Ocean Model (HYCOM) assimilation and observations, we analyzed seasonal variability of the salinity budget in the southeastern Arabian Sea (AS) and the southern part of the Bay of Bengal (BOB), as well as water exchange between the two basins. Results show that fresh water flux cannot explain salinity changes in salinity budget of both regions. Oceanic advection decreases salinity in the southeastern AS during the winter monsoon season and increases salinity in the southern BOB during the summer monsoon season. In winter, the Northeast Monsoon Current (NMC) carries fresher water from the BOB westward into the southern AS; this westward advection is confined to 4°-6°N and the upper 180 m south of the Indian peninsula. Part of the less saline water then turns northward, decreasing salinity in the southeastern AS. In summer, the Southwest Monsoon Current (SMC) advects high-salinity water from the AS eastward into the BOB, increasing salinity along its path. This eastward advection of high-salinity water south of the India Peninsula extends southward to 2°N, and the layer becomes shallower than in winter. In addition to the monsoon current, the salinity difference between the two basins is important for salinity advection.
基金Short-term Climate Prediction Study for Guangdong Province a key project of Guangdong Science and Technology Committee in the national 9th five-year economic development plan Research on Long-term Tendency Prediction System for Floods/Drought and Typh
文摘Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential height field, outgoing longwave radiation (OLR) field, sea surface temperature (SST) and fourteen indexes of general circulation depicting atmosphere activity at high, middle and low latitutes. Being multiple tools of information, a number of conceptual models are formulated that are useful for prediction of the magnitude of monthly precipitation (drought, flood and normal conditionss).
文摘The purpose of this study is to gain understanding of the relationshi p between ejaculation and serum testosterone level in men. The serum testosteron e concentrations of 28 volunteers were investigated daily during abstinence peri ods after ejaculation for two phases. The authors found that the fluctuations o f testosterone levels from the 2nd to 5th day of abstinence were minimal. On the 7th day of abstinence, however, a clear peak of serum testosterone appeared, re aching 145.7% of the baseline (P<0.01). No regular fluctuation was observed foll owing continuous abstinence after the peak. Ejaculation is the precondition and beginning of the special periodic serum testosterone level variations, which wou ld not occur without ejaculation. The results showed that ejaculation-caused va r iations were characterized by a peak on the 7th day of abstinence; and that the effective time of an ejaculation is 7 days minimum. These data are the first to document the phenomenon of the periodic change in serum testosterone level; the correlation between ejaculation and periodic change in the serum testosterone le vel, and the pattern and characteristics of the periodic change.
基金financially supported by the National Key Research and Development Programme of China(2016YFA0601001)the National Natural Science Foundation of China(Grant Nos.U1612441 and 41473082)CAS"Light of West China"Program
文摘With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs play a pivotal role in controlling the spatiotemporal distribution of physical and chemical properties of the stored water, hydrodynamic characteristics are of great importance in understanding biogeochemical cycles in those reservoirs. To further this understanding, a field campaign was conducted in the Wujiangdu Reservoir of Guizhou Province. It was found that from the reservoir inlet to the front of the dam, velocity(v) was negativelycorrelated and had a logarithmic relationship with distance along the ship track(s) under dry-season flow conditions[v =-0.104 ln(s) + 0.4756]. Analysis showed that dryseason flow velocity had no significant correlation with water temperature, p H, or dissolved oxygen(DO). However, when velocity decreased to 0.061 m/s, water depth increased abruptly. In addition, DO displayed a sudden drop and the trend in p H changed from increasing to decreasing, while water temperature showed an opposite trend, indicating the existence of a transition zone from the river to the reservoir.
基金supported by a project of the National Key Research and Development Program of China (Grant No.2016YFA0602501)a project of the National Natural Science Foundation of China (Grant Nos.41630532 and 41575093)
文摘The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin(HRB) using in-situ observations. The simulated soil temperature and moisture in the two land surface models(LSMs) is consistent with the observation, especially in the rainy season. The models reproduce the mean values and seasonality of the energy fluxes of the croplands, despite the obvious underestimated total evaporation. Noah shows the lower deep soil temperature. The net radiation is well simulated for the diurnal time scale. The daytime latent heat fluxes are always underestimated, while the sensible heat fluxes are overestimated to some degree. Compared with Noah, Noah-MP has improved daily average soil heat flux with diurnal variations. Generally, Noah-MP performs fairly well for different landscapes of the HRB. The simulated cold bias in soil temperature is possibly linked with the parameterized partition of the energy into surface fluxes. Thus, further improvement of these LSMs remains a major challenge.
基金the research project on the Management of Point Calimere wetland funded by Ministry of Environment and Forests,Government of India
文摘Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter(SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditions. Freshwater flow was available during post-monsoon and monsoon. An up-estuary shift in the location of estuarine turbidity maxima(ETM) was observed during the transition from post-monsoon to pre-monsoon and further it shifted downstream during the transition from pre-monsoon to monsoon, thereby exhibiting a pronounced seasonal cycle. The salinity intrusion was dependent on the freshwater discharge and was expressed as a power function of freshwater flow, explaining 97% of the variance. The formation of a salt plug in Muthupet estuary and its seasonal dynamics were observed, which is not an identified feature of any of the Indian estuaries studied so far. The geographical positions of salt plug and ETM core were more or less the same during their formation. The occurrence of two ETM during the LW of post-monsoon and the absence of ETM during monsoon explains the strong seasonal variation in the formation of ETM. The primary factor affecting the formation of ETM was identified as the freshwater flow over an annual cycle; the resuspension of sediments by tidal current affecting the formation on a flood/ebb cycle was secondary. The extent of shift of ETM was found to be an inverse logarithmic function of the freshwater discharge. The separation between ETM intrusion and salinity intrusion increased two fold with the increase in ETM intrusion.
基金Supported by the "Global Center of Excellence for Dryland Science",a project of the Ministry of Education,Science,Culture,Sports and Technology of Japan
文摘Salt-affected soils are agricultural and environmental problems on a global scale. Plants suffer from saline stresses in these soils and show nitrogen (N) deficiency symptoms. However, halophytes grow soundly under saline conditions. In order to clarify the N nutrition of the halophyte Salicornia bigelovii, it was grown at several N levels (1, 2, 3, and 4 mmol L-1), supplied in the form of NO3 or ammonium (NH4+), under high NaCl conditions (200 mmol L-l). NH4^+- fed plants showed better growth than NO3-fed plants at 1-3 mmol L-1N, and plants in both treatments showed the same growth at 4 mmol L-1 N. Nitrogen contents in NO3-fed plants increased with the N concentrations in solution; competitive inhibition of NO3- absorption by Cl- was observed under lower N conditions. In addition, shoot dry weight was significantly correlated only with shoot N content. Therefore, growth of NO3-fed plants was regulated by N absorption. In contrast, N contents of shoots in NH4+-fed plants did not change with N concentration. Shoot Na content decreased with increasing N concentration, while K content increased. Dry weight was highly correlated only with K content in NH4+-fed plants. These observations indicated that growth of NH4+-fed plants was mainly regulated by K absorption.
文摘In order to evaluate seasonal and regional variations in precipitation in Niigata City, 65 hourly precipitation samples were collected from October 2009 to June 2011 including two snow events. In this work, major ions (Na+, K+, Ca2+, Mg2+, NH4+, SO4^2-, NO3- and Cl-) were combined with tritium (^3H or T) concentration (T specific activity) in both precipitation and snow, and transformation patterns of polluted air mass in Niigata region were revealed. The low level tritium in precipitation was measured by a distillation process and an electrolytic enrichment process. Each tritium concentration in the precipitation sample thus obtained was measured by liquid scintillation counter. On the basis of the above measurement and analysis, it was found that the tritium and nss (non-sea-salt) calcium concentrations showed a seasonal variation with a highest value in spring over one year.