In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The appro...In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The approach of using the SDN technology in the current task scheduling flexibility, accomplish real-time monitoring of the service node flow and load condition by the OpenFlow protocol. When the load of system is imbalanced, the controller can allocate globally network resources. What's more, by using dynamic correction, the load of the system is not obvious tilt in the long run. The results of simulation show that this approach can realize and ensure that the load will not tilt over a long period of time, and improve the system throughput.展开更多
Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,...Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.展开更多
基金supported by the National Natural Science Foundation of China(No.61163058No.61201250 and No.61363006)Guangxi Key Laboratory of Trusted Software(No.KX201306)
文摘In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The approach of using the SDN technology in the current task scheduling flexibility, accomplish real-time monitoring of the service node flow and load condition by the OpenFlow protocol. When the load of system is imbalanced, the controller can allocate globally network resources. What's more, by using dynamic correction, the load of the system is not obvious tilt in the long run. The results of simulation show that this approach can realize and ensure that the load will not tilt over a long period of time, and improve the system throughput.
基金ACKNOWLEDGEMENTS The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. The research has been partly supported by National Natural Science Foundation of China No. 61272528 and No. 61034005, and the Central University Fund (ID-ZYGX2013J073).
文摘Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.