In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,prop...In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,propose an efficient three-phase framework and corresponding algorithms for dealing with this problem.Firstly,a greedy scheduling algorithm based on the lower bound of the ergodic rate is performed for generating an elementary cluster in the first phase.And then the elementary cluster is divided into many small clusters according to the following proposed algorithms based on the short term instantaneous information in the second phase.In the end,based on the limited feedback two zero-forcing(ZF) precoding strategies are adopted for reducing the intra-cluster interference in the third phase.The provided Monte Carlo simulations show the effectiveness of our proposed algorithms in the respect of system spectral efficiency and average user rate.展开更多
Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lif...Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lifetime and improving tracking accuracy,sensor node scheduling for target tracking is indeed a multi-objective optimization problem.In this paper,a multi-objective optimization sensor node scheduling algorithm is proposed.It employs the unscented Kalman filtering algorithm for target state estimation and establishes tracking accuracy index,predicts the energy consumption of candidate sensor nodes,analyzes the relationship between network lifetime and remaining energy balance so as to construct energy efficiency index.Simulation results show that,compared with the existing sensor node scheduling,our proposed algorithm can achieve superior tracking accuracy and energy efficiency.展开更多
In this paper, a sensing model for the coverage analysis of wireless sensor networks is provided. Using this model and Monte Carlo method, the ratio of private range to sensing range required to obtain the desired cov...In this paper, a sensing model for the coverage analysis of wireless sensor networks is provided. Using this model and Monte Carlo method, the ratio of private range to sensing range required to obtain the desired coverage can be derived considering the scale of deployment area and the number of sensor nodes. Base on the coverage analysis, an energy-efficient distributed node scheduling scheme is proposed to prolong the network lifetime while maintaining the desired sensing coverage, which does not need the geographic or neighbor information of nodes. The proposed scheme can also handle uneven distribution, and it is robust against node failures. Theoretical and simulation results demonstrate its efficiency and usefulness.展开更多
基金supported by the National Natural Science Foundation of China(NSFC) under Grant(No. 61461136001)
文摘In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,propose an efficient three-phase framework and corresponding algorithms for dealing with this problem.Firstly,a greedy scheduling algorithm based on the lower bound of the ergodic rate is performed for generating an elementary cluster in the first phase.And then the elementary cluster is divided into many small clusters according to the following proposed algorithms based on the short term instantaneous information in the second phase.In the end,based on the limited feedback two zero-forcing(ZF) precoding strategies are adopted for reducing the intra-cluster interference in the third phase.The provided Monte Carlo simulations show the effectiveness of our proposed algorithms in the respect of system spectral efficiency and average user rate.
基金Supported by the National Natural Science Foundation of China(No.90820302,60805027)the Research Fund for Doctoral Program of Higher Education(No.200805330005)the Academician Foundation of Hunan(No.2009FJ4030)
文摘Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lifetime and improving tracking accuracy,sensor node scheduling for target tracking is indeed a multi-objective optimization problem.In this paper,a multi-objective optimization sensor node scheduling algorithm is proposed.It employs the unscented Kalman filtering algorithm for target state estimation and establishes tracking accuracy index,predicts the energy consumption of candidate sensor nodes,analyzes the relationship between network lifetime and remaining energy balance so as to construct energy efficiency index.Simulation results show that,compared with the existing sensor node scheduling,our proposed algorithm can achieve superior tracking accuracy and energy efficiency.
基金Supported by China Scholarship Council(No.201306255014)
文摘In this paper, a sensing model for the coverage analysis of wireless sensor networks is provided. Using this model and Monte Carlo method, the ratio of private range to sensing range required to obtain the desired coverage can be derived considering the scale of deployment area and the number of sensor nodes. Base on the coverage analysis, an energy-efficient distributed node scheduling scheme is proposed to prolong the network lifetime while maintaining the desired sensing coverage, which does not need the geographic or neighbor information of nodes. The proposed scheme can also handle uneven distribution, and it is robust against node failures. Theoretical and simulation results demonstrate its efficiency and usefulness.