Based on the system architecture and software structure of GMLC (Gateway Mobile Location Center) in 3G (third generation), a new dynamic load-balancing algorithm is proposed. It bases on dynamic feedback and imports t...Based on the system architecture and software structure of GMLC (Gateway Mobile Location Center) in 3G (third generation), a new dynamic load-balancing algorithm is proposed. It bases on dynamic feedback and imports the increment for admitting new request into the load forecast. It dynamically adjusts the dispatching probability according to the remainder process capability of each node. Experiments on the per- formance of algorithm have been carried out in GMLC and the algorithm is compared with Pick-KX algorithm and DFB (Dynamic FeedBack) algorithm in average throughput and average response time. Experiments re- sults show that the average throughput of the proposed algorithm is about five percents higher than that of the other two algorithms and the average response time is four percents higher under high system loading condi- tion.展开更多
Wireless sensor networks consist of hundreds or thousands of sensor nodes that involve numerous restrictions in-cluding computation capability and battery capacity.Topology control is an important issue for achieving ...Wireless sensor networks consist of hundreds or thousands of sensor nodes that involve numerous restrictions in-cluding computation capability and battery capacity.Topology control is an important issue for achieving a balanced placement of sensor nodes.The clustering scheme is a widely known and efficient means of topology control for transmitting information to the base station in two hops.The automatic routing scheme of the self-organizing technique is another critical element of wireless sensor networks.In this paper we propose an optimal algorithm with cluster balance taken into consideration,and compare it with three well known and widely used approaches,i.e.,LEACH,MEER,and VAP-E,in performance evaluation.Experimental results show that the proposed approach increases the overall network lifetime,indicating that the amount of energy required for com-munication to the base station will be reduced for locating an optimal cluster.展开更多
基金(1) National Science Fund for Distin-guished Young Scholars (No. 60525110) (2) Special-ized Research Fund for the Doctoral Program of Higher Education (No. 20030013006)+3 种基金 (3) National Specialized R&D Project for the Product of Mobile Communica-tions (Development and Application of Next Generation Mobile Intelligent Network) (4) Key Project of Devel-opment Fund for Electronic and Information Industry (Core Service Platform for Next Generation Network) (5) Development Fund Project for Electronic and Infor-mation Industry (Value-added Service Platform and Ap-plication System for Mobile Communications) (6) Na-tional Specific Project for Hi-tech Industrialization and Information Equipments (Mobile Intelligent Network Supporting Value-added Data Services).
文摘Based on the system architecture and software structure of GMLC (Gateway Mobile Location Center) in 3G (third generation), a new dynamic load-balancing algorithm is proposed. It bases on dynamic feedback and imports the increment for admitting new request into the load forecast. It dynamically adjusts the dispatching probability according to the remainder process capability of each node. Experiments on the per- formance of algorithm have been carried out in GMLC and the algorithm is compared with Pick-KX algorithm and DFB (Dynamic FeedBack) algorithm in average throughput and average response time. Experiments re- sults show that the average throughput of the proposed algorithm is about five percents higher than that of the other two algorithms and the average response time is four percents higher under high system loading condi- tion.
基金supported by the Chung-Ang University Research Scholarship Grants,Korea
文摘Wireless sensor networks consist of hundreds or thousands of sensor nodes that involve numerous restrictions in-cluding computation capability and battery capacity.Topology control is an important issue for achieving a balanced placement of sensor nodes.The clustering scheme is a widely known and efficient means of topology control for transmitting information to the base station in two hops.The automatic routing scheme of the self-organizing technique is another critical element of wireless sensor networks.In this paper we propose an optimal algorithm with cluster balance taken into consideration,and compare it with three well known and widely used approaches,i.e.,LEACH,MEER,and VAP-E,in performance evaluation.Experimental results show that the proposed approach increases the overall network lifetime,indicating that the amount of energy required for com-munication to the base station will be reduced for locating an optimal cluster.