RRT(Rapidly exploring Random Tree)是一种基于采样的路径规划算法,非常适用于机器人的路径规划中,但是传统RRT^(*)算法存在耗时长、占用内存较大等缺点。所以针对这些问题提出一种改进RRT^(*)算法,该算法优化了父节点选取范围,在传统...RRT(Rapidly exploring Random Tree)是一种基于采样的路径规划算法,非常适用于机器人的路径规划中,但是传统RRT^(*)算法存在耗时长、占用内存较大等缺点。所以针对这些问题提出一种改进RRT^(*)算法,该算法优化了父节点选取范围,在传统随机采样机制的基础上引入了目标偏置采样和启发式策略,减少了算法耗时且缩短了路径长度;引入了节点拒绝策略,消除转弯角太大的冗余路径的同时也进一步提升了算法效率。利用MATLAB进行了仿真实验验证,结果表明改进RRT^(*)算法能在更短的时间内搜索到一条从起点到终点的最短无碰路径,并且可以很好地应用于机械臂的路径规划中。展开更多
文摘RRT(Rapidly exploring Random Tree)是一种基于采样的路径规划算法,非常适用于机器人的路径规划中,但是传统RRT^(*)算法存在耗时长、占用内存较大等缺点。所以针对这些问题提出一种改进RRT^(*)算法,该算法优化了父节点选取范围,在传统随机采样机制的基础上引入了目标偏置采样和启发式策略,减少了算法耗时且缩短了路径长度;引入了节点拒绝策略,消除转弯角太大的冗余路径的同时也进一步提升了算法效率。利用MATLAB进行了仿真实验验证,结果表明改进RRT^(*)算法能在更短的时间内搜索到一条从起点到终点的最短无碰路径,并且可以很好地应用于机械臂的路径规划中。