本研究采用与有限元法(finite element method,FEM)相对照的方式,论述了光滑节点域有限元法(node-based smoothed finite element method,NS-FEM)节点域的形成方式,光滑应变矩阵的求解步骤以及光滑有限元形函数的计算方法。利用matlab...本研究采用与有限元法(finite element method,FEM)相对照的方式,论述了光滑节点域有限元法(node-based smoothed finite element method,NS-FEM)节点域的形成方式,光滑应变矩阵的求解步骤以及光滑有限元形函数的计算方法。利用matlab对典型算例进行编程分析,结果表明NS-FEM计算刚度矩阵偏软,位移和应变能为解的上限,应力、应变和应变能具有良好的计算精度且不会产生体积锁定现象等。展开更多
Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the ...Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the joint is influenced by infilled concrete, stiffener length and relative dimensions of column and beam. It is found that the hysteresis curves obtained in the experiment are full and the joints have a good energy dissipation capacity. The nonlinear finite element models are also used to analyze the hysteresis behavior of the joints under reversed cyclic loads using ANSYS 8.0. The influences of the stiffener length and the infilled concrete are analyzed. Analytical results show that the stiffener length and the infilled concrete are critical for the joints. Furthermore, the skeleton curves of the finite element models are in good agreement with those of experiments.展开更多
Higher-order Time Domain Finite Element Method (TDFEM) based on the nodal inter- polation is proposed for two-dimensional electromagnetic analysis. The detailed algorithms of the method are presented firstly, and then...Higher-order Time Domain Finite Element Method (TDFEM) based on the nodal inter- polation is proposed for two-dimensional electromagnetic analysis. The detailed algorithms of the method are presented firstly, and then the accuracy, CPU time and memory consumption of the higher-order node-based TDFEM are investigated. The high performance of the presented approach is validated by numerical results of the transient responses of Transverse Electric (TE) field and Transverse Magnetic (TM) field in a rectangular waveguide.展开更多
In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient app...In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient approach to this problem.It firstly meshes the cracked body regardless of the geometry integrity of the interesting object with triangular elements.After the meshing procedure is completed,some elements are intersected by cracks.For the element intersected by a crack,the TEPM takes the element partition technique to incorporate the discontinuity into the numerical model without any interpolation enrichment.By this approach,the TEPM can simulate fracture without mesh modification.In the TEPM,all the cracked elements are treated as the usual partitioned elements in which the crack runs through.The virtual node pairs(the intersection points of crack faces and elements)at the opposite faces of the crack move independently.Their displacements are respectively determined by their neighbor real nodes(nodes formatted in the original mesh scheme)at the same side of the crack.However,among these cracked elements,the element containing a crack tip,referred to as the crack tip element thereafter,behaves differently from those cut through by the crack.Its influence on the singular field at the vicinity of the fracture tip becomes increasingly significant with the element size increasing.In the crack tip element,the virtual node pair at the crack tip move consistently before fracture occurs while the virtual node pair separate and each virtual node moves independently after the fracture propagates.Accordingly,the crack tip element is automatically transformed into the usual partitioned element.In the present paper,the crack tip element is introduced into the TEPM to account for the effect of the crack tip.Validation examples indicate that the present method is almost free from the element size effect.It can reach the same precision as the conventional finite element method under the same meshing scheme.But the TEPM is much more efficient and convenient than the conventional finite element method because the TEPM avoids the troubles that the conventional finite element method suffers,e.g.,the meshing problem of cracked body,modification of mesh scheme,etc.Though the extended finite element method can also avoid these troubles,it introduces extra degrees of freedom due to node interpolation enrichment.Due to the simplicity of the present TEPM,it is believed that its perspective should be highly inspiring.展开更多
Several quadrilateral shape regular mesh conditions commonly used in the finite element method are proven to be equivalent. Their influence on the finite element interpolation error and the consistency error committe...Several quadrilateral shape regular mesh conditions commonly used in the finite element method are proven to be equivalent. Their influence on the finite element interpolation error and the consistency error committed by nonconforming finite elements are investigated. The effect of the Bi-Section Condition and its extended version (1+α)-Section Condition on the degenerate mesh conditions is also checked. The necessity of the Bi-Section Condition in finite elements is underpinned by means of counterexamples.展开更多
基金Project(52178309) supported by the National Natural Science Foundation of ChinaProject(2017YFC0804602) supported by the National Key R&D Program of China。
文摘本研究采用与有限元法(finite element method,FEM)相对照的方式,论述了光滑节点域有限元法(node-based smoothed finite element method,NS-FEM)节点域的形成方式,光滑应变矩阵的求解步骤以及光滑有限元形函数的计算方法。利用matlab对典型算例进行编程分析,结果表明NS-FEM计算刚度矩阵偏软,位移和应变能为解的上限,应力、应变和应变能具有良好的计算精度且不会产生体积锁定现象等。
基金Supprorted by the Science and Technology Foundation of Jiangsu Construction Committee(JS200214)the Science Research Foundation of Nanjing Institute of Technology(KXJ08122)~~
文摘Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the joint is influenced by infilled concrete, stiffener length and relative dimensions of column and beam. It is found that the hysteresis curves obtained in the experiment are full and the joints have a good energy dissipation capacity. The nonlinear finite element models are also used to analyze the hysteresis behavior of the joints under reversed cyclic loads using ANSYS 8.0. The influences of the stiffener length and the infilled concrete are analyzed. Analytical results show that the stiffener length and the infilled concrete are critical for the joints. Furthermore, the skeleton curves of the finite element models are in good agreement with those of experiments.
基金Supported by National Natural Science Foundation of China (No. 60601024)
文摘Higher-order Time Domain Finite Element Method (TDFEM) based on the nodal inter- polation is proposed for two-dimensional electromagnetic analysis. The detailed algorithms of the method are presented firstly, and then the accuracy, CPU time and memory consumption of the higher-order node-based TDFEM are investigated. The high performance of the presented approach is validated by numerical results of the transient responses of Transverse Electric (TE) field and Transverse Magnetic (TM) field in a rectangular waveguide.
基金supported by the National Natural Science Foundation of China (Grant No. 11172172)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB013505)
文摘In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient approach to this problem.It firstly meshes the cracked body regardless of the geometry integrity of the interesting object with triangular elements.After the meshing procedure is completed,some elements are intersected by cracks.For the element intersected by a crack,the TEPM takes the element partition technique to incorporate the discontinuity into the numerical model without any interpolation enrichment.By this approach,the TEPM can simulate fracture without mesh modification.In the TEPM,all the cracked elements are treated as the usual partitioned elements in which the crack runs through.The virtual node pairs(the intersection points of crack faces and elements)at the opposite faces of the crack move independently.Their displacements are respectively determined by their neighbor real nodes(nodes formatted in the original mesh scheme)at the same side of the crack.However,among these cracked elements,the element containing a crack tip,referred to as the crack tip element thereafter,behaves differently from those cut through by the crack.Its influence on the singular field at the vicinity of the fracture tip becomes increasingly significant with the element size increasing.In the crack tip element,the virtual node pair at the crack tip move consistently before fracture occurs while the virtual node pair separate and each virtual node moves independently after the fracture propagates.Accordingly,the crack tip element is automatically transformed into the usual partitioned element.In the present paper,the crack tip element is introduced into the TEPM to account for the effect of the crack tip.Validation examples indicate that the present method is almost free from the element size effect.It can reach the same precision as the conventional finite element method under the same meshing scheme.But the TEPM is much more efficient and convenient than the conventional finite element method because the TEPM avoids the troubles that the conventional finite element method suffers,e.g.,the meshing problem of cracked body,modification of mesh scheme,etc.Though the extended finite element method can also avoid these troubles,it introduces extra degrees of freedom due to node interpolation enrichment.Due to the simplicity of the present TEPM,it is believed that its perspective should be highly inspiring.
文摘Several quadrilateral shape regular mesh conditions commonly used in the finite element method are proven to be equivalent. Their influence on the finite element interpolation error and the consistency error committed by nonconforming finite elements are investigated. The effect of the Bi-Section Condition and its extended version (1+α)-Section Condition on the degenerate mesh conditions is also checked. The necessity of the Bi-Section Condition in finite elements is underpinned by means of counterexamples.