Inter-domain path computing is one big issue in multi-domain networks. The Hierarchical Path Computing Element (H-PCE) is a semi-central architecture for computing inter-domain path. To facilitate H-PCE in inter-domai...Inter-domain path computing is one big issue in multi-domain networks. The Hierarchical Path Computing Element (H-PCE) is a semi-central architecture for computing inter-domain path. To facilitate H-PCE in inter-domain path computing, this paper proposed a topology aggregation scheme to abstract the edge nodes and their connected inter-domain link as one vertex to achieve more optimal paths and confidentiality guarantee. The effectiveness of the scheme has been demonstrated on solving wavelength routing in multi-domain Wavelength Division Multiplexing (WDM) network via simulation. Simulation results show that this scheme reduces at least 10% inter-domain blocking probability, compared with the traditional Domain-to-the-Node (DtN) scheme.展开更多
Delay/disruption tolerant networking (DTN) is an approach to networking where intermittent connectivity exists: it is often afforded by a store and forward technique. Depending on the capability of intermediary nod...Delay/disruption tolerant networking (DTN) is an approach to networking where intermittent connectivity exists: it is often afforded by a store and forward technique. Depending on the capability of intermediary nodes to carry and forward messages, messages can be eventually delivered to their destination by mobile nodes with an appropriate routing protocol. To have achieved a successful delivery, most DTN routing protocols use message duplication methods. Although messages are rapidly transferred to the destination, the redundancy in the number of message copies increases rapidly. This paper presents a new routing scheme based on a stochastic process for epidemic routing. Message redundancy is efficiently reduced and the number of message copies is controlled reasonably. During the contact process of nodes in the network, the number of message copies changes, and according to the variability in the number of copies, we construct a special Markov chain, birth and death process, on the number of message copies then calculate and obtain a stationary distribution of the birth and death process. Comparing the theoretical model with the simulation we have performed we see similar results. Our method improves on time-to-live (TTL) and antipacket methods, in both redundancy and delivery success efficiency.展开更多
基金Acknowledgements This work was supported by Chang Jiang Scholars Program of the Ministry of Education of China, National Science Fund for Distinguished Young Scholars under Grant No.60725104 the National Basic Research Program of China under Grant No. 2007CB310706+2 种基金 the National Natural Science Foundation of China under Ca'ant No. 60932002, No. 60932005, No. 61071101 the Hi-Tech Research and Development Program of China under Grant No. 2009AA01Z254, No. 2009AA01Z215 NCEF Program of MoE of China, and Sichuan Youth Science and Technology Foundation under Crant No. 09ZQ026-032.
文摘Inter-domain path computing is one big issue in multi-domain networks. The Hierarchical Path Computing Element (H-PCE) is a semi-central architecture for computing inter-domain path. To facilitate H-PCE in inter-domain path computing, this paper proposed a topology aggregation scheme to abstract the edge nodes and their connected inter-domain link as one vertex to achieve more optimal paths and confidentiality guarantee. The effectiveness of the scheme has been demonstrated on solving wavelength routing in multi-domain Wavelength Division Multiplexing (WDM) network via simulation. Simulation results show that this scheme reduces at least 10% inter-domain blocking probability, compared with the traditional Domain-to-the-Node (DtN) scheme.
文摘Delay/disruption tolerant networking (DTN) is an approach to networking where intermittent connectivity exists: it is often afforded by a store and forward technique. Depending on the capability of intermediary nodes to carry and forward messages, messages can be eventually delivered to their destination by mobile nodes with an appropriate routing protocol. To have achieved a successful delivery, most DTN routing protocols use message duplication methods. Although messages are rapidly transferred to the destination, the redundancy in the number of message copies increases rapidly. This paper presents a new routing scheme based on a stochastic process for epidemic routing. Message redundancy is efficiently reduced and the number of message copies is controlled reasonably. During the contact process of nodes in the network, the number of message copies changes, and according to the variability in the number of copies, we construct a special Markov chain, birth and death process, on the number of message copies then calculate and obtain a stationary distribution of the birth and death process. Comparing the theoretical model with the simulation we have performed we see similar results. Our method improves on time-to-live (TTL) and antipacket methods, in both redundancy and delivery success efficiency.