The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method ...The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively.展开更多
The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented here...The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.展开更多
Macrobenthos samples were collected from the Yellow and East China Seas in four seasons during 2011 to 2012. The seasonal distribution of macrobenthos and its relationship with environmental factors were analyzed. A t...Macrobenthos samples were collected from the Yellow and East China Seas in four seasons during 2011 to 2012. The seasonal distribution of macrobenthos and its relationship with environmental factors were analyzed. A total of 562 macrobenthic species were identified, with polychaetes and mollusks accounting for 67% of the total number of species. A similarity percentage(SIMPER) analysis showed that the dominant species were bivalve mollusks in the Yellow Sea and small-sized polychaetes in the East China Sea. A two-factor analysis of variance showed significant seasonal variations in species number, density and diversity index, and significant regional differences of biomass and density. Two-factor community similarity analysis also showed significant seasonal and regional differences in macrobenthic communities. Canonical correspondence analysis indicated that the main environmental factors af fecting the macrobenthic communities were water depth, temperature, dissolved oxygen, and inorganic nitrogen. The results demonstrate significant regional differences and seasonal variations in macrobenthos in the two seas. Sediment properties and water mass characteristics are speculated to be the causes of regional differences.展开更多
The equations determining a resultant screw of two given screws are applied to the studies on gearing and meshing theories. A kinematical classification is proposed and meanwhile proof is given to the First Theorem of...The equations determining a resultant screw of two given screws are applied to the studies on gearing and meshing theories. A kinematical classification is proposed and meanwhile proof is given to the First Theorem of Gearing and Willis Theorem.展开更多
On the basis of a comprehensive literature review and data analysis of global influenza surveillance, a transmission theory based numerical model is developed to understand the causative factors of influenza seasonali...On the basis of a comprehensive literature review and data analysis of global influenza surveillance, a transmission theory based numerical model is developed to understand the causative factors of influenza seasonality and the biodynamical mechanisms of seasonal flu. The model is applied to simulate the seasonality and weekly activity of influenza in different areas across all continents and climate zones around the world. Model solution and the good matches between model output and actual influenza indexes affirm that influenza activity is highly auto-correlative and relies on determinants of a broad spectrum. Internal dynamic resonance; variations of meteorological elements (solar radiation, precipitation and dewpoint); socio-behavioral influences and herd immunity to circulating strains prove to be the critical explanatory factors of the seasonality and weekly activity of influenza. In all climate regions, influenza activity is proportional to the exponential of the number of days with precipitation and to the negative exponential of quarter power of sunny hours. Influenza activity is a negative exponential function of dewpoint in temperate and arctic regions and an exponential function of the absolute deviation of dewpoint from its annual mean in the tropics. Epidemics of seasonal influenza could be deemed as the consequence of the dynamic resonance and interactions of determinants. Early interventions (such as opportune vaccination, prompt social distancing, and maintaining incidence well below a baseline) are key to the control and prevention of seasonal influenza. Moderate amount of sunlight exposure or Vitamin D supplementation during rainy and short-day photoperiod seasons, more outdoor activities, and appropriate indoor dewpoint deserve great attention in influenza prevention. To a considerable degree, the study reveals the mechanism of influenza seasonality, demonstrating a potential for influenza activity projection. The concept and algorithm can be explored for further applications.展开更多
This paper first establishes the prior globe dynamical model by geophysics,which is a solid earth elastic deformation model.Then,the parameters of the globe dynamic model can be obtained by inverting the geodetic data...This paper first establishes the prior globe dynamical model by geophysics,which is a solid earth elastic deformation model.Then,the parameters of the globe dynamic model can be obtained by inverting the geodetic data.The inverse method can be used in seismology and geology,and to make earthquake prediction.展开更多
文摘The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively.
基金Project (No.863-705-210) supported by the Hi-Tech Research and Development Program (863) of China
文摘The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB428903)the National Marine Public Welfare Research Project of China(No.201505004-3)+1 种基金the National Natural Science Foundation of China(No.41706125)the Scientific Research Fund of the Second Institute of Oceanography,SOA(No.JG1616)
文摘Macrobenthos samples were collected from the Yellow and East China Seas in four seasons during 2011 to 2012. The seasonal distribution of macrobenthos and its relationship with environmental factors were analyzed. A total of 562 macrobenthic species were identified, with polychaetes and mollusks accounting for 67% of the total number of species. A similarity percentage(SIMPER) analysis showed that the dominant species were bivalve mollusks in the Yellow Sea and small-sized polychaetes in the East China Sea. A two-factor analysis of variance showed significant seasonal variations in species number, density and diversity index, and significant regional differences of biomass and density. Two-factor community similarity analysis also showed significant seasonal and regional differences in macrobenthic communities. Canonical correspondence analysis indicated that the main environmental factors af fecting the macrobenthic communities were water depth, temperature, dissolved oxygen, and inorganic nitrogen. The results demonstrate significant regional differences and seasonal variations in macrobenthos in the two seas. Sediment properties and water mass characteristics are speculated to be the causes of regional differences.
文摘The equations determining a resultant screw of two given screws are applied to the studies on gearing and meshing theories. A kinematical classification is proposed and meanwhile proof is given to the First Theorem of Gearing and Willis Theorem.
文摘On the basis of a comprehensive literature review and data analysis of global influenza surveillance, a transmission theory based numerical model is developed to understand the causative factors of influenza seasonality and the biodynamical mechanisms of seasonal flu. The model is applied to simulate the seasonality and weekly activity of influenza in different areas across all continents and climate zones around the world. Model solution and the good matches between model output and actual influenza indexes affirm that influenza activity is highly auto-correlative and relies on determinants of a broad spectrum. Internal dynamic resonance; variations of meteorological elements (solar radiation, precipitation and dewpoint); socio-behavioral influences and herd immunity to circulating strains prove to be the critical explanatory factors of the seasonality and weekly activity of influenza. In all climate regions, influenza activity is proportional to the exponential of the number of days with precipitation and to the negative exponential of quarter power of sunny hours. Influenza activity is a negative exponential function of dewpoint in temperate and arctic regions and an exponential function of the absolute deviation of dewpoint from its annual mean in the tropics. Epidemics of seasonal influenza could be deemed as the consequence of the dynamic resonance and interactions of determinants. Early interventions (such as opportune vaccination, prompt social distancing, and maintaining incidence well below a baseline) are key to the control and prevention of seasonal influenza. Moderate amount of sunlight exposure or Vitamin D supplementation during rainy and short-day photoperiod seasons, more outdoor activities, and appropriate indoor dewpoint deserve great attention in influenza prevention. To a considerable degree, the study reveals the mechanism of influenza seasonality, demonstrating a potential for influenza activity projection. The concept and algorithm can be explored for further applications.
文摘This paper first establishes the prior globe dynamical model by geophysics,which is a solid earth elastic deformation model.Then,the parameters of the globe dynamic model can be obtained by inverting the geodetic data.The inverse method can be used in seismology and geology,and to make earthquake prediction.