The hyperpolarization-activated current (If) plays an important role in determining the spontaneous rate of cardiac pacemaker cells. The automatic rhythmicity also exists in working cells of embryonic heart, therefore...The hyperpolarization-activated current (If) plays an important role in determining the spontaneous rate of cardiac pacemaker cells. The automatic rhythmicity also exists in working cells of embryonic heart, therefore we studied developmental changes in functional expression and β-adrenergic regulation of Iy in embryonic mouse heart. The expression of If is high in early developmental stage (EDS) (10.5 d after coitus) ventricular myocytes, low in intermediate developmental stage (IDS) (13.5 d) atrial or ventricular myocytes and even lower in late developmental stage (LDS) (16.5 d) atrial or ventricular myocytes, indicating that these cells of the EDS embryonic heart have some properties of pacemaker cells.β-adrenergic agonist isoproterenol (ISO) stimulates If in LDS but not in EDS cardiomyocytes, indicating that the β-adrenergic regulation of If is not mature in EDS embryonic heart. But forskolin (a direct activator of adenylate cyclase) and 8-Br-cAMP (a membrane-permeable analogue of cAMP) increase the amplitude of If in EDS cells, indicating that adenylate cyclase and cAMP function fairly well at early stage of development. Furthermore, the results demonstrate that If is modulated by phosphorylation via cAMP dependent PKA both in EDS and LDS cells.展开更多
By radioreceptor binding studies with iodinated TGF-β1, it has been shown that an undifferentiated ES-5 cell expresses approximately 3270 receptors with a dissociation constant Kd=130pM, but after the induction of di...By radioreceptor binding studies with iodinated TGF-β1, it has been shown that an undifferentiated ES-5 cell expresses approximately 3270 receptors with a dissociation constant Kd=130pM, but after the induction of differenti-ation by retinoic acid and dBcAMP, the receptor number of a differentiated RA-ES-5 cell was increased about 80% and the Kd was also increased to 370 pM. Furthermore,more direct evidence supporting the expression of TGF-βtype Ⅰand type Ⅱ receptors in both ES-5 and RA-ES-5 cells has come from dot blot hybridization of cellular mRNA with cDNA probes for type Ⅰ and type Ⅱ recep-tors. Meanwhile, mRNA expression level of types Ⅰ and Ⅱreceptors in RA-ES-5 cells were higher than that in ES-5 cells. Down regulation of TGF-β receptors with a signifi-cant decrease in the rate of cell proliferation in both cells, was found by employing a pretreatment with neutralizing antibody to TGF-β1. The possible role of receptors for TGF-β in cen differentiation is discussed here.展开更多
Black rockfish(Sebastes schlegeli) is an important species for culture; however, its reproductive characteristics have not been fully documented. In this study, we investigated the morphology and developmental process...Black rockfish(Sebastes schlegeli) is an important species for culture; however, its reproductive characteristics have not been fully documented. In this study, we investigated the morphology and developmental process of germ cells in this ovoviviparous rockfish in reproductive season(October 2011–November 2012) with histological methods. We found that the gonad of mature fish showed notable seasonal changes in developmental characteristics and morphological structure. The sperm cells matured during a period lasting from October to December, significantly earlier than the oocytes did. A large number of spermatozoa and other cells occurred in testis at different developmental stages. Vitellogenesis in oocytes began in October, and gestation appeared in April next year. Spermatophores were discovered for the first time in Sebastes, which assembled in testis, main sperm duct, oviduct and genital tract, as well as ovarian cavity in October and April. These organs may serve either as production or hiding places for spermatophores and spermatozoa which were stored and transported in form of spermatophores. Testicular degeneration started from the distal part of testis in April, with spermatophores assembled in degenerating testis and waiting for transportation. The copulation probably lasted for a long period, during which the spermatozoa were discharged in batches as spermatophores. These spermatophores were coated with sticky materials secreted from the interstitial areas of testis and the main sperm duct, then transported into ovary.展开更多
Objectives To study the expression patterns of two Eph family molecules, the receptor EphA5, and the ligand ephrin-A5, during spinal cord development. Methods The receptor expression was analyzed using beta-galactosid...Objectives To study the expression patterns of two Eph family molecules, the receptor EphA5, and the ligand ephrin-A5, during spinal cord development. Methods The receptor expression was analyzed using beta-galactosidase knockin mice, and affinity ligand probe binding. The ligand expression was assessed using two different affinity probes, and knockout mouse tissues as controls. Results EphA5 was expressed in the ventral spinal cord, while ephrin-A5 was located in the dorsolateral regions of the spinal cord throughout development. Conclusions These results show that EphA5 and ephrin-A5 are expressed over broad developmental stages and may play important roles in establishing the dorsoventral organization of the spinal cord.展开更多
The erythroid- and developmental stage-specific expression of the human ε-globin gene is controlled, in part,by the 5’-flanking DNA sequence of this gene. In the present study, we have used DNA-protein binding assay...The erythroid- and developmental stage-specific expression of the human ε-globin gene is controlled, in part,by the 5’-flanking DNA sequence of this gene. In the present study, we have used DNA-protein binding assays to identify trans-acting factors which regulate the temporal expression of the human ε-globin gene during development. Using gel mobility shift assays and DNasel footprinting assays, a nuclear protein factor (termed ε-SSF1) in the nuclear extracts from mouse haematopoietic tissues at d 11 and d 13 of gestation was identified. It could specifically bind to the positive control region (between -535 and -453bp) of the human ε-globin gene. We speculated that the E-SSF1 might be an erythroid- and developmental stage-specific activator. In addition, we found another nuclear protein factor (termed ε-R1) in the nuclear extract from mouse fetal liver at d 18 of gestation, which could strongly bind to the silencer region (between -392 and -177bp) of this gene. Therefore, we speculated that the ε-R1 might be an erythroid- and developmental stagespecific repressor. Our data suggest that both ε-SSF1 and ε-R1 might play important roles in developmental regulation of the human ε-globin gene expression during the early embryonic life. On the other hand, we observed that the binding patterns of nuclear proteins from three cell lines (K562, HEL and Raji) to these regulatory regions were partially different. These results suggest that different trans-acting factors in K562, HEL and Raji cells might be responsible for activating or silencing the human ε-globin gene in three different cell lines.展开更多
Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. How...Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. However, the underlying mechanisms of IP3R- regulated cell fate decision remain largely unknown. Here we report that IP3Rs are required for the hematopoietic and cardiac fate divergence of mouse embryonic stem cells (mESCs). Deletion of IP3Rs (IP3R-tKO) reduced FIkl+/PDGFRα- hematopoietic mesoderm, c-Kit+/CD41+ hematopoietic progenitor ceil population, and the colony-forming unit activity, but increased cardiac progenitor markers as well as cardiomyocytes. Concomitantly, the expression of a key regulator of hematopoiesis, Ely2, was reduced in IP3R-tKO cells, which could be rescued by the activation of Ca2+ signals and calcineurin or overexpression of constitutively active form of NFATc3. Furthermore, IP3R-tKO impaired specific targeting of Ely2 by NFATc3 via its evolutionarily conserved cis-element in differentiating ESCs. Importantly, the activation of Ca2+-calcineurin-NFAT pathway reversed the phenotype of IP3R-tKO cells. These findings reveal an unrecognized governing role of IP3Rs in hematopoietic and cardiac fate commitment via IP3Rs-Ca2+-calcineurin-NFATc3- Etv2 pathway.展开更多
基金supported by the National Natural Science Foundation of China,No.30070279
文摘The hyperpolarization-activated current (If) plays an important role in determining the spontaneous rate of cardiac pacemaker cells. The automatic rhythmicity also exists in working cells of embryonic heart, therefore we studied developmental changes in functional expression and β-adrenergic regulation of Iy in embryonic mouse heart. The expression of If is high in early developmental stage (EDS) (10.5 d after coitus) ventricular myocytes, low in intermediate developmental stage (IDS) (13.5 d) atrial or ventricular myocytes and even lower in late developmental stage (LDS) (16.5 d) atrial or ventricular myocytes, indicating that these cells of the EDS embryonic heart have some properties of pacemaker cells.β-adrenergic agonist isoproterenol (ISO) stimulates If in LDS but not in EDS cardiomyocytes, indicating that the β-adrenergic regulation of If is not mature in EDS embryonic heart. But forskolin (a direct activator of adenylate cyclase) and 8-Br-cAMP (a membrane-permeable analogue of cAMP) increase the amplitude of If in EDS cells, indicating that adenylate cyclase and cAMP function fairly well at early stage of development. Furthermore, the results demonstrate that If is modulated by phosphorylation via cAMP dependent PKA both in EDS and LDS cells.
文摘By radioreceptor binding studies with iodinated TGF-β1, it has been shown that an undifferentiated ES-5 cell expresses approximately 3270 receptors with a dissociation constant Kd=130pM, but after the induction of differenti-ation by retinoic acid and dBcAMP, the receptor number of a differentiated RA-ES-5 cell was increased about 80% and the Kd was also increased to 370 pM. Furthermore,more direct evidence supporting the expression of TGF-βtype Ⅰand type Ⅱ receptors in both ES-5 and RA-ES-5 cells has come from dot blot hybridization of cellular mRNA with cDNA probes for type Ⅰ and type Ⅱ recep-tors. Meanwhile, mRNA expression level of types Ⅰ and Ⅱreceptors in RA-ES-5 cells were higher than that in ES-5 cells. Down regulation of TGF-β receptors with a signifi-cant decrease in the rate of cell proliferation in both cells, was found by employing a pretreatment with neutralizing antibody to TGF-β1. The possible role of receptors for TGF-β in cen differentiation is discussed here.
基金supported financially by Grand Innovating Program of Agriculture Applying Technique in Shandong Province (No. 2008-109)Modern Agricultural Industry Technology System in Shandong Province and the Science and Technology Development Program of Yantai (No. 2013 ZH088)
文摘Black rockfish(Sebastes schlegeli) is an important species for culture; however, its reproductive characteristics have not been fully documented. In this study, we investigated the morphology and developmental process of germ cells in this ovoviviparous rockfish in reproductive season(October 2011–November 2012) with histological methods. We found that the gonad of mature fish showed notable seasonal changes in developmental characteristics and morphological structure. The sperm cells matured during a period lasting from October to December, significantly earlier than the oocytes did. A large number of spermatozoa and other cells occurred in testis at different developmental stages. Vitellogenesis in oocytes began in October, and gestation appeared in April next year. Spermatophores were discovered for the first time in Sebastes, which assembled in testis, main sperm duct, oviduct and genital tract, as well as ovarian cavity in October and April. These organs may serve either as production or hiding places for spermatophores and spermatozoa which were stored and transported in form of spermatophores. Testicular degeneration started from the distal part of testis in April, with spermatophores assembled in degenerating testis and waiting for transportation. The copulation probably lasted for a long period, during which the spermatozoa were discharged in batches as spermatophores. These spermatophores were coated with sticky materials secreted from the interstitial areas of testis and the main sperm duct, then transported into ovary.
基金This work was supported in part by grants from New Jersey Commission on Spinal Cord Research and the National Science Foundation (No. 0548561,USA).
文摘Objectives To study the expression patterns of two Eph family molecules, the receptor EphA5, and the ligand ephrin-A5, during spinal cord development. Methods The receptor expression was analyzed using beta-galactosidase knockin mice, and affinity ligand probe binding. The ligand expression was assessed using two different affinity probes, and knockout mouse tissues as controls. Results EphA5 was expressed in the ventral spinal cord, while ephrin-A5 was located in the dorsolateral regions of the spinal cord throughout development. Conclusions These results show that EphA5 and ephrin-A5 are expressed over broad developmental stages and may play important roles in establishing the dorsoventral organization of the spinal cord.
文摘The erythroid- and developmental stage-specific expression of the human ε-globin gene is controlled, in part,by the 5’-flanking DNA sequence of this gene. In the present study, we have used DNA-protein binding assays to identify trans-acting factors which regulate the temporal expression of the human ε-globin gene during development. Using gel mobility shift assays and DNasel footprinting assays, a nuclear protein factor (termed ε-SSF1) in the nuclear extracts from mouse haematopoietic tissues at d 11 and d 13 of gestation was identified. It could specifically bind to the positive control region (between -535 and -453bp) of the human ε-globin gene. We speculated that the E-SSF1 might be an erythroid- and developmental stage-specific activator. In addition, we found another nuclear protein factor (termed ε-R1) in the nuclear extract from mouse fetal liver at d 18 of gestation, which could strongly bind to the silencer region (between -392 and -177bp) of this gene. Therefore, we speculated that the ε-R1 might be an erythroid- and developmental stagespecific repressor. Our data suggest that both ε-SSF1 and ε-R1 might play important roles in developmental regulation of the human ε-globin gene expression during the early embryonic life. On the other hand, we observed that the binding patterns of nuclear proteins from three cell lines (K562, HEL and Raji) to these regulatory regions were partially different. These results suggest that different trans-acting factors in K562, HEL and Raji cells might be responsible for activating or silencing the human ε-globin gene in three different cell lines.
基金This study was supported by grants from the National Natural Science Foundation of China (31030050, 81520108004, and 81470422 to H.-T.Y.), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA01020204 to H.-T.Y.), the National Basic Research Program of China (2014CB965100 to H.-T.Y.), the National Science and Technology Major Project (2012ZX09501001 to H.-T.Y.), and the Shenzhen Science, Technology and Innovation Committee OCYI 20160428154108239 to K.O.).
文摘Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. However, the underlying mechanisms of IP3R- regulated cell fate decision remain largely unknown. Here we report that IP3Rs are required for the hematopoietic and cardiac fate divergence of mouse embryonic stem cells (mESCs). Deletion of IP3Rs (IP3R-tKO) reduced FIkl+/PDGFRα- hematopoietic mesoderm, c-Kit+/CD41+ hematopoietic progenitor ceil population, and the colony-forming unit activity, but increased cardiac progenitor markers as well as cardiomyocytes. Concomitantly, the expression of a key regulator of hematopoiesis, Ely2, was reduced in IP3R-tKO cells, which could be rescued by the activation of Ca2+ signals and calcineurin or overexpression of constitutively active form of NFATc3. Furthermore, IP3R-tKO impaired specific targeting of Ely2 by NFATc3 via its evolutionarily conserved cis-element in differentiating ESCs. Importantly, the activation of Ca2+-calcineurin-NFAT pathway reversed the phenotype of IP3R-tKO cells. These findings reveal an unrecognized governing role of IP3Rs in hematopoietic and cardiac fate commitment via IP3Rs-Ca2+-calcineurin-NFATc3- Etv2 pathway.