With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a v...With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.展开更多
Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of ma...Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.展开更多
In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving ...In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving scheme for the sink based on local residual energy was proposed.In the scheme,the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors.The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks.The simulation results show that the scheme can prolong the network lifetime by 26%-65%compared with the earlier schemes where the sink is static or moves randomly.展开更多
Wireless sensor network(WSN) is a typical kind of low-power and lossy network,in where ARQ(Automatic Repeat reQuest)schemes are often used to improve packets reliability.However,the ARQ related packets may incur signi...Wireless sensor network(WSN) is a typical kind of low-power and lossy network,in where ARQ(Automatic Repeat reQuest)schemes are often used to improve packets reliability.However,the ARQ related packets may incur significant load and consume more energy.This paper proposes a novel energy efficient ARQ protocol called ARQ+,which uses the nearest-first scheme and NAK aggregation scheme to reduce the amount and transmission hops of the ARQ related packets.Consequently,the energy consumption is significantly decreased.Theoretical analyses of ARQ+ on energy consumption,packet arrive ratio and latency are provided.Performance improvement of ARQ+ is validated by extensive simulations.They both show that ARQ+ has satisfactory energy efficiency,good packets arriving ratio and reasonable average packet delay comparing to traditional ARQ schemes.展开更多
Wireless sensor network is becoming more and more popular in recent years, but energy- constrained characteristic of sensor nodes is one of the critical issues that we must consider in system design. In this paper, a ...Wireless sensor network is becoming more and more popular in recent years, but energy- constrained characteristic of sensor nodes is one of the critical issues that we must consider in system design. In this paper, a cluster-based virtual VBLAST transmission scheme is proposed to achieve energy savings for energy-constrained wireless sensor networks. In the proposed scheme, instead of using cluster member as cooperative nodes, multiple cluster heads cooperate to form virtual antenna array so that V-BLAST based virtual MIMO transmission can be implemented. Based on the communication energy consumption model, a way to optimize the parameters for the scheme is given. In addition, detailed simulation is performed to evaluate the performance of the proposed scheme for both densely and sparsely deployed sensor networks. Theoretical analysis and simulation results verify the energy efficiency of the proposed scheme.展开更多
基金supported by NSFC under grant No. 61322111 and No. 61401249the National Basic Research Program of China (973 Program) No. 2013CB336600+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No. 20130002120001Chuanxin Funding, and Beijing nova program No.Z121101002512051
文摘With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.
文摘Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.
基金Project(60673164)supported by the National Natural Science Foundation of ChinaProject(20060533057)supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving scheme for the sink based on local residual energy was proposed.In the scheme,the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors.The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks.The simulation results show that the scheme can prolong the network lifetime by 26%-65%compared with the earlier schemes where the sink is static or moves randomly.
基金partly supported by the National Key Technology Research and Development Program of China under Grant No.2011BAK12B02the National Natural Science Foundation of China under Grant No.61104042+2 种基金the National S&T Major Project of China under Grant No.2010ZX03005-003the Program for New Century Excellent Talents in University(NCET-10-0294),Chinathe National Natural Science Foundation of China under Grant No.60832007
文摘Wireless sensor network(WSN) is a typical kind of low-power and lossy network,in where ARQ(Automatic Repeat reQuest)schemes are often used to improve packets reliability.However,the ARQ related packets may incur significant load and consume more energy.This paper proposes a novel energy efficient ARQ protocol called ARQ+,which uses the nearest-first scheme and NAK aggregation scheme to reduce the amount and transmission hops of the ARQ related packets.Consequently,the energy consumption is significantly decreased.Theoretical analyses of ARQ+ on energy consumption,packet arrive ratio and latency are provided.Performance improvement of ARQ+ is validated by extensive simulations.They both show that ARQ+ has satisfactory energy efficiency,good packets arriving ratio and reasonable average packet delay comparing to traditional ARQ schemes.
文摘Wireless sensor network is becoming more and more popular in recent years, but energy- constrained characteristic of sensor nodes is one of the critical issues that we must consider in system design. In this paper, a cluster-based virtual VBLAST transmission scheme is proposed to achieve energy savings for energy-constrained wireless sensor networks. In the proposed scheme, instead of using cluster member as cooperative nodes, multiple cluster heads cooperate to form virtual antenna array so that V-BLAST based virtual MIMO transmission can be implemented. Based on the communication energy consumption model, a way to optimize the parameters for the scheme is given. In addition, detailed simulation is performed to evaluate the performance of the proposed scheme for both densely and sparsely deployed sensor networks. Theoretical analysis and simulation results verify the energy efficiency of the proposed scheme.