Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ran...Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ranges decreasing gradually from the sea coast to the Kuroshio region. By getting rid of wind stress in ROMS model, the simulated sea level results still show obvious seasonal variations. However, the phenomenon of sea level anomaly disappears in Min Zhe Current Coastwise (MZCF) and Su Bei current coastwise (SBCF), and the change of it from coastal area to ocean recedes. The seal level difference between Bohai, Yellow Sea (BYS) and East China Sea (ECS) becomes weaker in spring and autumn. The annual differences decrease obviously, and the gradual change of annual ranges from seacoast to the Kuroshio almost disappears. The annual ranges in BYS are nearly identical. The annual range ratio without the wind stress to with the wind stress increases gradually from the sea coast to Kuroshio region.展开更多
The design of a segmented-rod projectile is often simplified into an ideal one in theoreti-cal analysis for the convenience of modeling of its performance.But the actual performance of non-ideal segmented-rod projecti...The design of a segmented-rod projectile is often simplified into an ideal one in theoreti-cal analysis for the convenience of modeling of its performance.But the actual performance of non-ideal segmented-rod projectiles over the impact velocity range in practical applications was rarely explored.AUTODYN numerical code is used to investigate the influence of the component design upon the penetration performance of non-ideal segmented-rod projectiles over a wide range of impact velocities,which can be used to guide the optimal design of weaponry segmented-rod projectiles.展开更多
Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio ...Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.展开更多
The seasonal variability in the surface energy exchange of an alpine grassland on the eastern Qinghai- Tibetan Plateau was investigated using eddy covariance measurements. Based on the change of air temperature and th...The seasonal variability in the surface energy exchange of an alpine grassland on the eastern Qinghai- Tibetan Plateau was investigated using eddy covariance measurements. Based on the change of air temperature and the seasonal distribution of precipitation, a winter season and wet season were identified, which were separated by transitional periods. The annual mean net radiation (Rn) was about 39 % of the annual mean solar radiation (Rs). Rn was relatively low during the winter season (21% of Rs) compared with the wet season (54 % of Rs), which can be explained by the difference in surface albedo and moisture condition between the two seasons. Annually, the main consumer of net radiation was latent heat flux (LE). During the winter season, sensible heat flux (H) was dominant because of the frozen soil condition and lack of precipita- tion. During the wet season, LE expended 66 % of Rn due to relatively high temperature and sufficient rainfall cou- pled with vegetation growth. Leaf area index (LAI) had important influence on energy partitioning during wet season. The high LAI due to high soil water content (θv) contributed to high surface conductance (go) and LE, and thus low Bowen ratio (β). LE was strongly controlled by Rn from June to August when gc and θv were high. During the transitional periods, H and LE were nearly equally parti- tioned in the energy balance. The results also suggested that the freeze-thaw condition of soil and the seasonal distribution of precipitation had important impacts on the energy exchange in this alpine grassland.展开更多
Terrain environment parameters play a vital role in controlling groundwater movement:its recharge and discharge me-chanisms.Many earlier studies have been conducted relating terrain parameters and groundwater conditio...Terrain environment parameters play a vital role in controlling groundwater movement:its recharge and discharge me-chanisms.Many earlier studies have been conducted relating terrain parameters and groundwater condition using conventional me-thods and remote sensing techniques.This study,however,endeavors to spatially visualize the degree of fluctuation in the ground-water level of Ongur,a minor river basin in different terrain units under different seasons(monsoon and summer) for three histori-cal periods of time using Geographic Information System(GIS) raster analysis.展开更多
Two monthly datasets of sea surface temperature (SST),TMI SST retrieved from satellite observations by Remote Sensing System and HadISST1 (Hadley Centre Sea-ice and Sea-surface Temperature Data Set Version 1) derived ...Two monthly datasets of sea surface temperature (SST),TMI SST retrieved from satellite observations by Remote Sensing System and HadISST1 (Hadley Centre Sea-ice and Sea-surface Temperature Data Set Version 1) derived from in situ measurements by Hadley Centre,were compared on climatologic multiple time scales over tropical and subtropical areas from 1998 to 2006.Results indicate that there is a good consistency in the horizontal global distribution,with 1.0° resolution on multi-year and multi-season mean scales between the two datasets,and also in the time series of global mean SST anomalies.However,there are still some significant differences between the datasets.Generally,TMI SST is relatively higher than HadISST1.In addition,the differences between the two datasets show not only remarkable regionality,but also distinct seasonal variations.Moreover,the maximum departure occurs in summer,while theminimum takes place in autumn.For all seasons,over 30% of the regions in the Tropical and Subtropical areas have a difference of more than 0.3°C.EOF analysis of the SST anomaly field also shows that there are differences between the two datasets,where HadISST1 has more significant statistical characteristics than TMI SST.On the other hand,results show that the difference between the two datasets is related to the vertical structure of ocean temperatures,as well as other simultaneously retrieved parameters in TMI products,such as wind speed,water vapor,liquid cloud water and rain rates.In addition,large biases between HadISST1 and TMI SST are found in coastal regions,where TMI SST cannot be accurately retrieved because of polluted microwave signals.展开更多
基金supported by the National Natural Science Foundation of China(contract No.41006002,No.41206013 and No.41106004)Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography of SOA(contract No.SOED1305)+3 种基金Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(contract No.KLOCAW1302)the Public Science and Technology Research Funds Projects of Ocean(contract No.200905001,No.201005019,and No.201205018)the Natural Science Foundation of State Ocean Administration(contract No.2012202,No.2012223,and No.2012224)Open Fund of Key Laboratory of Physical Oceanography,MOE(contract of Song jun)
文摘Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ranges decreasing gradually from the sea coast to the Kuroshio region. By getting rid of wind stress in ROMS model, the simulated sea level results still show obvious seasonal variations. However, the phenomenon of sea level anomaly disappears in Min Zhe Current Coastwise (MZCF) and Su Bei current coastwise (SBCF), and the change of it from coastal area to ocean recedes. The seal level difference between Bohai, Yellow Sea (BYS) and East China Sea (ECS) becomes weaker in spring and autumn. The annual differences decrease obviously, and the gradual change of annual ranges from seacoast to the Kuroshio almost disappears. The annual ranges in BYS are nearly identical. The annual range ratio without the wind stress to with the wind stress increases gradually from the sea coast to Kuroshio region.
文摘The design of a segmented-rod projectile is often simplified into an ideal one in theoreti-cal analysis for the convenience of modeling of its performance.But the actual performance of non-ideal segmented-rod projectiles over the impact velocity range in practical applications was rarely explored.AUTODYN numerical code is used to investigate the influence of the component design upon the penetration performance of non-ideal segmented-rod projectiles over a wide range of impact velocities,which can be used to guide the optimal design of weaponry segmented-rod projectiles.
基金supported by the Natural Science Foundation of China (No.41401044 and No.41310013)the key research projects of frontier sciences CAS (QYZDJ-SSW-DQC006)+1 种基金the Chinese Academy of Science (‘West Star’ project)the CAS/SAFEA international partnership program for creative research teams (KZZD-EW-TZ-06)
文摘Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.
基金supported by the National Basic Research Program of China(2010CB951701,2011CB952002)the National Natural Science Foundation of China(41205006,41275016)the Foundation for Excellent Youth Scholars of CAREERI,Chinese Academy of Sciences
文摘The seasonal variability in the surface energy exchange of an alpine grassland on the eastern Qinghai- Tibetan Plateau was investigated using eddy covariance measurements. Based on the change of air temperature and the seasonal distribution of precipitation, a winter season and wet season were identified, which were separated by transitional periods. The annual mean net radiation (Rn) was about 39 % of the annual mean solar radiation (Rs). Rn was relatively low during the winter season (21% of Rs) compared with the wet season (54 % of Rs), which can be explained by the difference in surface albedo and moisture condition between the two seasons. Annually, the main consumer of net radiation was latent heat flux (LE). During the winter season, sensible heat flux (H) was dominant because of the frozen soil condition and lack of precipita- tion. During the wet season, LE expended 66 % of Rn due to relatively high temperature and sufficient rainfall cou- pled with vegetation growth. Leaf area index (LAI) had important influence on energy partitioning during wet season. The high LAI due to high soil water content (θv) contributed to high surface conductance (go) and LE, and thus low Bowen ratio (β). LE was strongly controlled by Rn from June to August when gc and θv were high. During the transitional periods, H and LE were nearly equally parti- tioned in the energy balance. The results also suggested that the freeze-thaw condition of soil and the seasonal distribution of precipitation had important impacts on the energy exchange in this alpine grassland.
文摘Terrain environment parameters play a vital role in controlling groundwater movement:its recharge and discharge me-chanisms.Many earlier studies have been conducted relating terrain parameters and groundwater condition using conventional me-thods and remote sensing techniques.This study,however,endeavors to spatially visualize the degree of fluctuation in the ground-water level of Ongur,a minor river basin in different terrain units under different seasons(monsoon and summer) for three histori-cal periods of time using Geographic Information System(GIS) raster analysis.
基金supported by the National Basic Research Program of China(Grant No.2010CB428601)the Special Funds for Public Welfare of China(Grant Nos.GYHY200906002,GYHY200906003)+2 种基金the Science and Technology Special Basic Research of the Ministry of Science and Technology(Grant No.2007FY110700)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos.KZCX2-YW-Q11-04,KZCX2-EWQN507,KJCX2-YW-N25)the National Natural Science Foundation of China(Grant Nos.40730950,40805008)
文摘Two monthly datasets of sea surface temperature (SST),TMI SST retrieved from satellite observations by Remote Sensing System and HadISST1 (Hadley Centre Sea-ice and Sea-surface Temperature Data Set Version 1) derived from in situ measurements by Hadley Centre,were compared on climatologic multiple time scales over tropical and subtropical areas from 1998 to 2006.Results indicate that there is a good consistency in the horizontal global distribution,with 1.0° resolution on multi-year and multi-season mean scales between the two datasets,and also in the time series of global mean SST anomalies.However,there are still some significant differences between the datasets.Generally,TMI SST is relatively higher than HadISST1.In addition,the differences between the two datasets show not only remarkable regionality,but also distinct seasonal variations.Moreover,the maximum departure occurs in summer,while theminimum takes place in autumn.For all seasons,over 30% of the regions in the Tropical and Subtropical areas have a difference of more than 0.3°C.EOF analysis of the SST anomaly field also shows that there are differences between the two datasets,where HadISST1 has more significant statistical characteristics than TMI SST.On the other hand,results show that the difference between the two datasets is related to the vertical structure of ocean temperatures,as well as other simultaneously retrieved parameters in TMI products,such as wind speed,water vapor,liquid cloud water and rain rates.In addition,large biases between HadISST1 and TMI SST are found in coastal regions,where TMI SST cannot be accurately retrieved because of polluted microwave signals.