The Pamir plateau may have been a westward continuation of Tibet plateau.Meanwhile,the Rushan-Pshart suture is correlative to the Bangong-Nujiang suture of Tibet,and the Central Pamir is the lateral equivalent of the ...The Pamir plateau may have been a westward continuation of Tibet plateau.Meanwhile,the Rushan-Pshart suture is correlative to the Bangong-Nujiang suture of Tibet,and the Central Pamir is the lateral equivalent of the Qiangtang Block.We present the first detailed LA-ICPMS zircon U-Pb chronology,major and trace element,and Lu-Hf isotope geochemistry of Taxkorgan two-mica monzogranite to illuminate the Tethys evolution in central Pamir.LA-ICPMS zircon U-Pb dating shows that two-mica monzogranite is emplaced in the Cretaceous(118 Ma).Its geochemical features are similar to S-type granite,with enrichment in LREEs and negative Ba,Sr,Zr and Ti anomalies.All the samples show negative zirconεHf(t)values ranging from 17.0 to 12.5(mean 14.5),corresponding to crustal Hf model(TDM2)ages of 1906 to 2169 Ma.It is inferred that these granitoids are derived from partial melting of peliticmetasedimentary rocks analogous to the Paleoproterozoic Bulunkuole Group,predominantly with muscovite schists component.Based on the petrological and geochemical data presented above,together with the regional geology,this work provides new insights that Bangong Nujiang Ocean closed in Early Cretaceous(120114 Ma).展开更多
The Yesilova ophiolite located in the Alpine zone. This work deals with differentiation mechanism of ultramafic cumulate in ophiolite. Generally, the sequence consists of gabbro and plagiogranite. The petrographic and...The Yesilova ophiolite located in the Alpine zone. This work deals with differentiation mechanism of ultramafic cumulate in ophiolite. Generally, the sequence consists of gabbro and plagiogranite. The petrographic and petrolgichal properties of it show that the layering in gabbros are products of a differentiation by fractional crystallization insitu. Because it has ferrous compounds (magnetite, hematite) by means of volatiles (H2O, CO2) that evidence magma at high temperatures (〉700 ℃). Ferrous liquids are compatible with fractional crystallization through olivine, plagioclase, clinopyroxene removal; whereas the evolved gabbros represent clinopyroxene, plagioclase cumulates from ferrous liquids with little amounts of trapped melt. Furthermore, cathodo luminesans image of zircons shows chemichal characteristic of oceanic plagiogranit (such as Fe2O3/MgO, Rb, Sr, Zr, TiO2) that these characters can be explained by fractional crystallization processes in the late stage of magma generation. Furthermore, all plagiogranites have small positive Eu anomalies indicating the significant role of plagioclase in the fractional crystallization. So, the Yesilova ophiolite ultramafic cumulates are the most probably related to crystal-liquid fractionation process of the oceanic crust of the Alpine belt. The plagiogranite is differentiation products of crystal-liquid insitu ofa mafic magma in the magma chamber.展开更多
A rare geomorphosite and a pillow-like structure appearing as mingling structures due to that mafic and acidic magma interactions are described. Despite the occurrence of spectacular forms in the granitic basement of ...A rare geomorphosite and a pillow-like structure appearing as mingling structures due to that mafic and acidic magma interactions are described. Despite the occurrence of spectacular forms in the granitic basement of Sardinia, the morphosites of geological interest linked to the complex evolution of pluton emplacement are still poorly understood. The Fizza Ona outcrop, located near the northeastern coast, is a good example of a geomorphosite in the inner zone developed at the edge of different plutonic units. This outcrop is a well-exposed, pillow-like horizon of less than 5 m in thickness, observable in the field for at least 200 m and underlined by the occurrence of a large tafoni form. In detail, the pillow-like horizon consists of sub-roundly to sub-rounded elements of granitic to micropegmatitic rocks of up to 100 cm in diameter, which is dispersed in the fine-grained granitic host-rock matrix. The outcrop represents a particular example of the emplacement mechanism of granitic magmas in the Sardinian batholith. One aim of this work is the construction of a document for the competent authorities to protection and preservation of this outcrop as a cultural heritage for the history of the geological evolution.展开更多
Granite is one of the most important components of the continental crust on our Earth; it thus has been an enduring studied subject in geology. According to present knowledge, granite shows a great deal of heterogenei...Granite is one of the most important components of the continental crust on our Earth; it thus has been an enduring studied subject in geology. According to present knowledge, granite shows a great deal of heterogeneity in terms of its texture,structure, mineral species and geochemical compositions at different scales from small dike to large batholith. However, the reasons for these variations are not well understood although numerous interpretations have been proposed. The key point of this debate is whether granitic magma can be effectively differentiated through fractional crystallization, and, if so, what kind of crystallization occurred during the magmatic evolution. Although granitic magma has high viscosity because of its elevated SiO2 content, we agree that fractional crystallization is effectively processed during its evolution based on the evidence from field investigation,mineral species and its chemical variations, and geochemical compositions. These data indicate that crystal settling by gravitation is not the only mechanism dominating granitic differentiation. On the contrary, flow segregation or dynamic sorting may be more important. Accordingly, granite can be divided into unfractionated, fractionated(including weakly fractionated and highly fractionated) and cumulated types, according to the differentiation degree. Highly fractionated granitic magmas are generally high in primary temperature or high with various volatiles during the later stage, which make the fractional crystallization much easier than the common granitic melts. In addition, effective magmatic differentiation can be also expected when the magma emplaced along a large scale of extensional structure. Highly fractionated granitic magma is easily contaminated by country rocks due to its relatively prolonged crystallization time. Thus, granites do not always reflect the characteristics of the source areas and the physical and chemical conditions of the primary magma. We proposed that highly fractionated granites are an important sign indicating compositional maturity of the continental crust, and they are also closely related to the rare-elemental(metal) mineralization of W,Sn, Nb, Ta, Li, Be, Rb, Cs, REEs, etc.展开更多
The Qinling orogen is a typical composite orogen for understanding multi-stages of magmatism and orogenic processes. Many studies have been carried out on the magmatic rocks in the Qinling orogen but their petrogenesi...The Qinling orogen is a typical composite orogen for understanding multi-stages of magmatism and orogenic processes. Many studies have been carried out on the magmatic rocks in the Qinling orogen but their petrogenesis is still controversial. This pa- per presents a review of all granitoid rocks based on previous and new studies of geochronology and geochemistry. Four dis- tinct periods of granitoid magmatism, Neoproterozoic (979-711 Ma), Paleozoic (507-400 Ma), Early Mesozoic (250-185 Ma) and Late Mesozoic (160-100 Ma), have been recognized from the Qinling orogen according to zircon U-Pb ages, intrusion as- sociations and deformation, as well as regional geology. The Neoproterozoic granitic rocks consist of three stages at 979-911, 894-815 and 759-711 Ma, respectively, corresponding to strongly deformed S-type, weakly deformed I-type and A-type gran- itoids. They can be interpreted as magmatic occurrences in syn-collisional, post-collisional and extensional settings, respec- tively, in response to old continental terranes of the Neoproterozoic tectonomagmatic events in the old continents of China, such as South China and Tarim cratons. Although this continental terrane would be involved in the Phanerozoic Qinling orog- eny, the Neoproterozoic magmatic rocks are not the products of the Qinling orogenic processes. The Paleozoic magmatic rocks can be classified into three stages at 507-470, 460-422 and 415-400 Ma, respectively. The first-stage magmatism is temporal- ly associated with ultra-high pressure metamorphism in the North Qinling terrane. These magmatic rocks are interpreted as magmatic occurrences in subductional, syn-collisional and post-collisional settings, respectively. The Early Mesozoic mag- matic rocks occur in two stages at 252-185 and 225-200 Ma, respectively. The first-stage granitoids are mainly represented by I-type quartz diorites and granodiorites, and the second stage by granodiorites and monzogranites with the 1- to A-type charac- teristics and some with rapakivi textures. Their emplacement ages and geochemical parameters such as A/CNK, K2O/Na2O ra- tios and εNd(t) values do not show any polarity change in perpendicular to subduction/collision zone. Therefore, all these Early Mesozoic granitoids are unlikely the product of continental subduction as some researchers suggested. Instead, they are plausi- bly related to the subduction of the Mianlue Ocean and the subsequent collision between the South China Craton and the South Qinling terrane. The Late Mesozoic granitoids were emplaced mainly at two stages of 160-130 and 120-100 Ma, and charac- terized by the evolution from I- to I-A- and A-type granitoids. These characteristics are consistent with the granitoid magmatic evolution from contractional to extensional settings during the Jurassic/Cretaceous in eastern China. Accordingly, the Late Mesozoic granitoid rocks in the Qinling orogen probably have a similar petrogenetic mechanism to those of the huge magmatic belt along the western Pacific margin, i.e., intra-continent magmatism related to a far-field effect of the subduction of Paleo-Pacific plate.展开更多
In this paper, we report an integrated study of trace element, U-Pb age and Hf isotopic composition of zircons from alkali feldspar granites, granodiorites and diorite enclaves in a recently discovered ring complex at...In this paper, we report an integrated study of trace element, U-Pb age and Hf isotopic composition of zircons from alkali feldspar granites, granodiorites and diorite enclaves in a recently discovered ring complex at Lianghe in western Yunnan, Chi na. The granitoids showed identical U-Pb ages of 127, 115 and 122 Ma, from felsic to mafic, but had different zircon trace el ements and Hf isotopic compositions. Trace element content decreased with a gradual increase in εHf(t) values of ?9.1 to ?5.4, ?4.5 to 0, and 3.6 to 6.2, respectively. Results indicate that changes in zircon trace elements generally correlate with changes in Hf isotope signatures within single samples and among various granitoids. These relationships reflect the mixing of felsic and mafic magmas. Evidence indicates that depleted mantle-derived mafic magma underplating caused ancient crustal melting, and then formed large-scale granites in Lianghe during the Early Cretaceous. These granodiorites were formed mainly by the mix ing of mafic magma and granitic magma.展开更多
基金Project(41802103)supported by the National Natural Science Foundation of ChinaProject(2017YFC0601403)supported by the National Key R&D Program of China
文摘The Pamir plateau may have been a westward continuation of Tibet plateau.Meanwhile,the Rushan-Pshart suture is correlative to the Bangong-Nujiang suture of Tibet,and the Central Pamir is the lateral equivalent of the Qiangtang Block.We present the first detailed LA-ICPMS zircon U-Pb chronology,major and trace element,and Lu-Hf isotope geochemistry of Taxkorgan two-mica monzogranite to illuminate the Tethys evolution in central Pamir.LA-ICPMS zircon U-Pb dating shows that two-mica monzogranite is emplaced in the Cretaceous(118 Ma).Its geochemical features are similar to S-type granite,with enrichment in LREEs and negative Ba,Sr,Zr and Ti anomalies.All the samples show negative zirconεHf(t)values ranging from 17.0 to 12.5(mean 14.5),corresponding to crustal Hf model(TDM2)ages of 1906 to 2169 Ma.It is inferred that these granitoids are derived from partial melting of peliticmetasedimentary rocks analogous to the Paleoproterozoic Bulunkuole Group,predominantly with muscovite schists component.Based on the petrological and geochemical data presented above,together with the regional geology,this work provides new insights that Bangong Nujiang Ocean closed in Early Cretaceous(120114 Ma).
文摘The Yesilova ophiolite located in the Alpine zone. This work deals with differentiation mechanism of ultramafic cumulate in ophiolite. Generally, the sequence consists of gabbro and plagiogranite. The petrographic and petrolgichal properties of it show that the layering in gabbros are products of a differentiation by fractional crystallization insitu. Because it has ferrous compounds (magnetite, hematite) by means of volatiles (H2O, CO2) that evidence magma at high temperatures (〉700 ℃). Ferrous liquids are compatible with fractional crystallization through olivine, plagioclase, clinopyroxene removal; whereas the evolved gabbros represent clinopyroxene, plagioclase cumulates from ferrous liquids with little amounts of trapped melt. Furthermore, cathodo luminesans image of zircons shows chemichal characteristic of oceanic plagiogranit (such as Fe2O3/MgO, Rb, Sr, Zr, TiO2) that these characters can be explained by fractional crystallization processes in the late stage of magma generation. Furthermore, all plagiogranites have small positive Eu anomalies indicating the significant role of plagioclase in the fractional crystallization. So, the Yesilova ophiolite ultramafic cumulates are the most probably related to crystal-liquid fractionation process of the oceanic crust of the Alpine belt. The plagiogranite is differentiation products of crystal-liquid insitu ofa mafic magma in the magma chamber.
文摘A rare geomorphosite and a pillow-like structure appearing as mingling structures due to that mafic and acidic magma interactions are described. Despite the occurrence of spectacular forms in the granitic basement of Sardinia, the morphosites of geological interest linked to the complex evolution of pluton emplacement are still poorly understood. The Fizza Ona outcrop, located near the northeastern coast, is a good example of a geomorphosite in the inner zone developed at the edge of different plutonic units. This outcrop is a well-exposed, pillow-like horizon of less than 5 m in thickness, observable in the field for at least 200 m and underlined by the occurrence of a large tafoni form. In detail, the pillow-like horizon consists of sub-roundly to sub-rounded elements of granitic to micropegmatitic rocks of up to 100 cm in diameter, which is dispersed in the fine-grained granitic host-rock matrix. The outcrop represents a particular example of the emplacement mechanism of granitic magmas in the Sardinian batholith. One aim of this work is the construction of a document for the competent authorities to protection and preservation of this outcrop as a cultural heritage for the history of the geological evolution.
基金supported by the National Natural Science Foundation of China (Grant No. 41130313)by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB03010200)
文摘Granite is one of the most important components of the continental crust on our Earth; it thus has been an enduring studied subject in geology. According to present knowledge, granite shows a great deal of heterogeneity in terms of its texture,structure, mineral species and geochemical compositions at different scales from small dike to large batholith. However, the reasons for these variations are not well understood although numerous interpretations have been proposed. The key point of this debate is whether granitic magma can be effectively differentiated through fractional crystallization, and, if so, what kind of crystallization occurred during the magmatic evolution. Although granitic magma has high viscosity because of its elevated SiO2 content, we agree that fractional crystallization is effectively processed during its evolution based on the evidence from field investigation,mineral species and its chemical variations, and geochemical compositions. These data indicate that crystal settling by gravitation is not the only mechanism dominating granitic differentiation. On the contrary, flow segregation or dynamic sorting may be more important. Accordingly, granite can be divided into unfractionated, fractionated(including weakly fractionated and highly fractionated) and cumulated types, according to the differentiation degree. Highly fractionated granitic magmas are generally high in primary temperature or high with various volatiles during the later stage, which make the fractional crystallization much easier than the common granitic melts. In addition, effective magmatic differentiation can be also expected when the magma emplaced along a large scale of extensional structure. Highly fractionated granitic magma is easily contaminated by country rocks due to its relatively prolonged crystallization time. Thus, granites do not always reflect the characteristics of the source areas and the physical and chemical conditions of the primary magma. We proposed that highly fractionated granites are an important sign indicating compositional maturity of the continental crust, and they are also closely related to the rare-elemental(metal) mineralization of W,Sn, Nb, Ta, Li, Be, Rb, Cs, REEs, etc.
基金supported by the National Natural Science Foundation of China(Grant Nos.40872054,41172062 and 41430209)the National Key Basic Science Research Project of China(Grant Nos.2009CB825006 and 2009CB825003)+1 种基金China Geological Survey(Grant Nos.1212010012012,12120113094000,1212011120135 and 1212010811033)Development Project of Innovative Team,Northwest University
文摘The Qinling orogen is a typical composite orogen for understanding multi-stages of magmatism and orogenic processes. Many studies have been carried out on the magmatic rocks in the Qinling orogen but their petrogenesis is still controversial. This pa- per presents a review of all granitoid rocks based on previous and new studies of geochronology and geochemistry. Four dis- tinct periods of granitoid magmatism, Neoproterozoic (979-711 Ma), Paleozoic (507-400 Ma), Early Mesozoic (250-185 Ma) and Late Mesozoic (160-100 Ma), have been recognized from the Qinling orogen according to zircon U-Pb ages, intrusion as- sociations and deformation, as well as regional geology. The Neoproterozoic granitic rocks consist of three stages at 979-911, 894-815 and 759-711 Ma, respectively, corresponding to strongly deformed S-type, weakly deformed I-type and A-type gran- itoids. They can be interpreted as magmatic occurrences in syn-collisional, post-collisional and extensional settings, respec- tively, in response to old continental terranes of the Neoproterozoic tectonomagmatic events in the old continents of China, such as South China and Tarim cratons. Although this continental terrane would be involved in the Phanerozoic Qinling orog- eny, the Neoproterozoic magmatic rocks are not the products of the Qinling orogenic processes. The Paleozoic magmatic rocks can be classified into three stages at 507-470, 460-422 and 415-400 Ma, respectively. The first-stage magmatism is temporal- ly associated with ultra-high pressure metamorphism in the North Qinling terrane. These magmatic rocks are interpreted as magmatic occurrences in subductional, syn-collisional and post-collisional settings, respectively. The Early Mesozoic mag- matic rocks occur in two stages at 252-185 and 225-200 Ma, respectively. The first-stage granitoids are mainly represented by I-type quartz diorites and granodiorites, and the second stage by granodiorites and monzogranites with the 1- to A-type charac- teristics and some with rapakivi textures. Their emplacement ages and geochemical parameters such as A/CNK, K2O/Na2O ra- tios and εNd(t) values do not show any polarity change in perpendicular to subduction/collision zone. Therefore, all these Early Mesozoic granitoids are unlikely the product of continental subduction as some researchers suggested. Instead, they are plausi- bly related to the subduction of the Mianlue Ocean and the subsequent collision between the South China Craton and the South Qinling terrane. The Late Mesozoic granitoids were emplaced mainly at two stages of 160-130 and 120-100 Ma, and charac- terized by the evolution from I- to I-A- and A-type granitoids. These characteristics are consistent with the granitoid magmatic evolution from contractional to extensional settings during the Jurassic/Cretaceous in eastern China. Accordingly, the Late Mesozoic granitoid rocks in the Qinling orogen probably have a similar petrogenetic mechanism to those of the huge magmatic belt along the western Pacific margin, i.e., intra-continent magmatism related to a far-field effect of the subduction of Paleo-Pacific plate.
基金supported by China Geological Survey (Grant No. 1212010784007)
文摘In this paper, we report an integrated study of trace element, U-Pb age and Hf isotopic composition of zircons from alkali feldspar granites, granodiorites and diorite enclaves in a recently discovered ring complex at Lianghe in western Yunnan, Chi na. The granitoids showed identical U-Pb ages of 127, 115 and 122 Ma, from felsic to mafic, but had different zircon trace el ements and Hf isotopic compositions. Trace element content decreased with a gradual increase in εHf(t) values of ?9.1 to ?5.4, ?4.5 to 0, and 3.6 to 6.2, respectively. Results indicate that changes in zircon trace elements generally correlate with changes in Hf isotope signatures within single samples and among various granitoids. These relationships reflect the mixing of felsic and mafic magmas. Evidence indicates that depleted mantle-derived mafic magma underplating caused ancient crustal melting, and then formed large-scale granites in Lianghe during the Early Cretaceous. These granodiorites were formed mainly by the mix ing of mafic magma and granitic magma.