期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
花状自组装FePt纳米颗粒的制备 被引量:4
1
作者 李芳 杜雪岩 +1 位作者 徐凯 杨瑞成 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第4期707-710,共4页
选用硼氢化钠(NaBH4)作为还原剂,聚乙二醇(PEG2000)作为表面活性剂,利用简单的湿化学还原工艺,在室温下制备花状自组装的FePt纳米颗粒。XRD和TEM表征显示:所制备的FePt纳米颗粒是化学无序的面心立方(fcc)结构。颗粒形貌主要由平均粒径... 选用硼氢化钠(NaBH4)作为还原剂,聚乙二醇(PEG2000)作为表面活性剂,利用简单的湿化学还原工艺,在室温下制备花状自组装的FePt纳米颗粒。XRD和TEM表征显示:所制备的FePt纳米颗粒是化学无序的面心立方(fcc)结构。颗粒形貌主要由平均粒径分别为19.2和4.9nm的梭形和球形颗粒组成。这些梭形的"花瓣"和球形的"花蕊"自组装形成大小不等的花状结构。推测认为,纳米颗粒的花状自组装主要是表面活性剂集合的结果。VSM显示所制备FePt纳米颗粒的磁性能室温下为超顺磁性,饱和磁化强度Ms约为10.9(A·m2)/kg,相同条件下PVP作为表面活性剂时Ms约为0.6(A·m2)/kg,两者比较,选用PEG作为表面活性剂,Ms大约增大18倍。 展开更多
关键词 FEPT纳米颗粒 花状自组装 磁性能
原文传递
Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction 被引量:12
2
作者 Lei Cheng Dainan Zhang +2 位作者 Yulong Liao Jiajie Fan Quanjun Xiang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期131-140,共10页
The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is high... The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes.In this work,three-dimensional hierarchical Cd0.8Zn0.2S flowers(C8Z2S-F)with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director.The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2,generating CO up to 41.4μmol g^−1 under visible-light illumination for 3 h;this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles(C8Z2S-NP)(14.7μmol g^−1).Particularly,a comparably high selectivity of 89.9%for the conversion of CO2 to CO,with a turnover number of 39.6,was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent.Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F.The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process.Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability,thus providing a highly effective photocatalytic reduction of CO2. 展开更多
关键词 Cd0.8Zn0.2S flowers Self-assembly growth Photocatalytic CO2 reduction High selectivity Visible-light irradiation
下载PDF
Self-assembly of Ophiopogonis polysaccharide-iron(Ⅲ) complex in aqueous solution and solid state 被引量:4
3
作者 Chunxia Tan Yali Wang 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2019年第9期665-672,共8页
Ophiopogonis polysaccharide-iron(Ⅲ)(OPI)was prepared and characterized in the present study.The optimum condition for preparing OPI was as follows:OP and trisodium citrate were mixed at a weight ratio of 4:1 and reac... Ophiopogonis polysaccharide-iron(Ⅲ)(OPI)was prepared and characterized in the present study.The optimum condition for preparing OPI was as follows:OP and trisodium citrate were mixed at a weight ratio of 4:1 and reacted in a water bath at 70°C for 3 h within the pH range of 8.0–8.5.Aggregation morphology or structure of OPI in aqueous solution and solid state was studied by scanning electron microscopy,transmission electron microscopy and small-angle X-ray diffraction.In aqueous solution,OPI could self-assemble into micron vesicles with flower-shaped morphology.Results of X-ray diffraction showed OPI with layered structure.A core-shell model was proposed for OPI. 展开更多
关键词 Supramolecular complexes Ophiopogonis polysaccharide-iron(Ⅲ) SELF-ASSEMBLY Flower-shaped morphology Layered structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部