The distributions of PNA binding glycoconjugates in the plasma membrane of Acrida cinerea Thunberg germ cells were detected using biotin labeled PNA, for better understanding of the formation and changes of glycoconju...The distributions of PNA binding glycoconjugates in the plasma membrane of Acrida cinerea Thunberg germ cells were detected using biotin labeled PNA, for better understanding of the formation and changes of glycoconjugates during oogenesis. The ultrastructure of vitellogenesis also was observed by electron microscopy for detection of the origin and track of vitelline material. In the ovary, PNA receptors appeared in the oocyte cytoplasm of the second phases of oogenesis; positive granules gradually increased from the third phase to the fourth, and they exhibited a maximum expression before the vitellogennic stage in the cytoplasm of the oocyte. From the vitellogennic to chorionation stage, positive granules gradually declined. Binding sites on follicle cells were changed with their morphological variation in every stage of oogenesis. The vitelline of A.cinerea formed within the oocyte by degrees. The results suggest that PNA receptors and yolk materials are synthesized by the oocyte at an early period. With the development of the oocyte, some exogeous materials from two sources act as PNA receptors and others take part in vitelline synthesis. One is blood lymph that offers some useful materials to the oocyte directly through follicle cell gaps; the other are follicle cells that produce and transmit some materials to oocyte to support vitellogenesis. In addition, PNA receptors secreted by follicle cells participate in the formation of yolk membrane.展开更多
文摘The distributions of PNA binding glycoconjugates in the plasma membrane of Acrida cinerea Thunberg germ cells were detected using biotin labeled PNA, for better understanding of the formation and changes of glycoconjugates during oogenesis. The ultrastructure of vitellogenesis also was observed by electron microscopy for detection of the origin and track of vitelline material. In the ovary, PNA receptors appeared in the oocyte cytoplasm of the second phases of oogenesis; positive granules gradually increased from the third phase to the fourth, and they exhibited a maximum expression before the vitellogennic stage in the cytoplasm of the oocyte. From the vitellogennic to chorionation stage, positive granules gradually declined. Binding sites on follicle cells were changed with their morphological variation in every stage of oogenesis. The vitelline of A.cinerea formed within the oocyte by degrees. The results suggest that PNA receptors and yolk materials are synthesized by the oocyte at an early period. With the development of the oocyte, some exogeous materials from two sources act as PNA receptors and others take part in vitelline synthesis. One is blood lymph that offers some useful materials to the oocyte directly through follicle cell gaps; the other are follicle cells that produce and transmit some materials to oocyte to support vitellogenesis. In addition, PNA receptors secreted by follicle cells participate in the formation of yolk membrane.