The aquatic ecosystem maybe significantly affected by polycyclic aromatic hydrocarbons(PAHs) released from fresh water sediments. In order to protect biodiversity, the spatial distribution and sources of PAHs in the s...The aquatic ecosystem maybe significantly affected by polycyclic aromatic hydrocarbons(PAHs) released from fresh water sediments. In order to protect biodiversity, the spatial distribution and sources of PAHs in the sediment of Wolong Lake in Northeast China were studied. A total of 17 surface sediment samples were collected and 12 PAHs were analyzed. The results were as follows. The concentration of total PAHs(TPAHs) ranged between 1412.9 μg/kg and 3948.3 μg/kg(dry weight). Indeno [1, 2, 3-c, d] pyrene was the dominant contaminant which accounted for 87%–98% of TPAHs. Diagnostic ratios of PAHs and principal component analysis showed that biomass combustion and vehicle emissions were likely to be the dominant sources of PAHs in the sediment. PAHs can be considered safe in the context of environmental and human health protection, based on the overall toxicity. Individual PAHs were positively correlated with total organic carbons. These results will be helpful to control PAHs and protect the aquatic ecosystem in the lake.展开更多
The environmental quality status of Daya Bay (22.56-22.77°N, 114.51-114.73°E), a main aquaculture area in Guangdong of China, was investigated using 16 polycyclic aromatic hydrocarbon (PAH) sediment samp...The environmental quality status of Daya Bay (22.56-22.77°N, 114.51-114.73°E), a main aquaculture area in Guangdong of China, was investigated using 16 polycyclic aromatic hydrocarbon (PAH) sediment samples of the bay. The total concentrations of 16 PAHs varied from 115 to 1 134 ng/g dry weight. The PAH composition pattern in sediments suggest dominance of 4-ring PAHs in Sites 2 and 4, and the ratio of certain related PAHs indicated important pyrolytic and petrogemc sources. The results enhance the understanding of current contamination levels and make a better assessment of likely impacts of organic contamination on ecosystems and the sustainability of local aquaculture in the area especially after the establishment of the Nuclear Power Station by the bay.展开更多
Twenty snow samples were collected from the Qiyi glacier in Qilian Mountains,the Yuzhufeng glacier in eastern Kunlun Mountains,the Xiaodongkemadi glacier in Tanggula Mountains,and the Gurenhekou glacier in Nyainqê...Twenty snow samples were collected from the Qiyi glacier in Qilian Mountains,the Yuzhufeng glacier in eastern Kunlun Mountains,the Xiaodongkemadi glacier in Tanggula Mountains,and the Gurenhekou glacier in Nyainqêntanglha Range over the Tibetan Plateau.The concentration and distribution features of sixteen priority Polycyclic Aromatic Hydrocarbons (PAHs) were determined by gas chromatography equipped with a mass spectrometry detector (GC-MS).The sources of these PAHs were explored as well.Our results indicated that the average concentrations of PAHs in snow were in the range of 20.45 60.57 ng/L.Maximum PAHs levels were found in the YZF glacier andminimum in the XDKMD glacier.However,no apparent regional distribution pattern of PAHs was found in the glaciers over the Tibetan Plateau.Moreover,the 2 4 ring low molecular weight PAHs predominated in snow samples and the concentrations of phenanthrene was the highest.Integrated factor analysis and isomer pair ratios suggested that PAHs of glaciers over the Tibetan Plateau were derived from low temperature combustion of coal and biomass,and partially from the exhaust gas of locomotives.Air mass back trajectory indicated that organic compounds detected in snowpit of these four glaciers,in the period of time they represented,mainly came from Central Asia and the arid area of Northwest China by westerly wind circulation.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41101295)Shenyang Science and Technology Projects(No.JJ2011-13)
文摘The aquatic ecosystem maybe significantly affected by polycyclic aromatic hydrocarbons(PAHs) released from fresh water sediments. In order to protect biodiversity, the spatial distribution and sources of PAHs in the sediment of Wolong Lake in Northeast China were studied. A total of 17 surface sediment samples were collected and 12 PAHs were analyzed. The results were as follows. The concentration of total PAHs(TPAHs) ranged between 1412.9 μg/kg and 3948.3 μg/kg(dry weight). Indeno [1, 2, 3-c, d] pyrene was the dominant contaminant which accounted for 87%–98% of TPAHs. Diagnostic ratios of PAHs and principal component analysis showed that biomass combustion and vehicle emissions were likely to be the dominant sources of PAHs in the sediment. PAHs can be considered safe in the context of environmental and human health protection, based on the overall toxicity. Individual PAHs were positively correlated with total organic carbons. These results will be helpful to control PAHs and protect the aquatic ecosystem in the lake.
基金Supported by China Postdoctoral Science Foundation (No. 2005037621)the National Science Foundation of China (No. 40206015)Fork Ying Tong Education Foundation (No.94002), and the International (CBI) through Fellowship to J. L. Zhou
文摘The environmental quality status of Daya Bay (22.56-22.77°N, 114.51-114.73°E), a main aquaculture area in Guangdong of China, was investigated using 16 polycyclic aromatic hydrocarbon (PAH) sediment samples of the bay. The total concentrations of 16 PAHs varied from 115 to 1 134 ng/g dry weight. The PAH composition pattern in sediments suggest dominance of 4-ring PAHs in Sites 2 and 4, and the ratio of certain related PAHs indicated important pyrolytic and petrogemc sources. The results enhance the understanding of current contamination levels and make a better assessment of likely impacts of organic contamination on ecosystems and the sustainability of local aquaculture in the area especially after the establishment of the Nuclear Power Station by the bay.
基金supported by the National Natural Science Foundation of China(Grant Nos.40801023,40930526,40871038)West Light Foundation of the Chinese Academy of Sciences(Grant No.290928601)
文摘Twenty snow samples were collected from the Qiyi glacier in Qilian Mountains,the Yuzhufeng glacier in eastern Kunlun Mountains,the Xiaodongkemadi glacier in Tanggula Mountains,and the Gurenhekou glacier in Nyainqêntanglha Range over the Tibetan Plateau.The concentration and distribution features of sixteen priority Polycyclic Aromatic Hydrocarbons (PAHs) were determined by gas chromatography equipped with a mass spectrometry detector (GC-MS).The sources of these PAHs were explored as well.Our results indicated that the average concentrations of PAHs in snow were in the range of 20.45 60.57 ng/L.Maximum PAHs levels were found in the YZF glacier andminimum in the XDKMD glacier.However,no apparent regional distribution pattern of PAHs was found in the glaciers over the Tibetan Plateau.Moreover,the 2 4 ring low molecular weight PAHs predominated in snow samples and the concentrations of phenanthrene was the highest.Integrated factor analysis and isomer pair ratios suggested that PAHs of glaciers over the Tibetan Plateau were derived from low temperature combustion of coal and biomass,and partially from the exhaust gas of locomotives.Air mass back trajectory indicated that organic compounds detected in snowpit of these four glaciers,in the period of time they represented,mainly came from Central Asia and the arid area of Northwest China by westerly wind circulation.