A number of studies have shown the existence of cross-tolerance in plants, but the physiological mechanism is poorly understood. In this study, we used the germination of barley seeds as a system to investigate the cr...A number of studies have shown the existence of cross-tolerance in plants, but the physiological mechanism is poorly understood. In this study, we used the germination of barley seeds as a system to investigate the cross-tolerance of low-temperature pretreatment to high-temperature stress and the possible involvement of reactive oxygen species (ROS) scavenging enzymes in the cross-tolerance. After pretreatment at 0 ℃ for different periods of time, barley seeds were germinated at 35 ℃, and the content of malondialdehyde (MDA) and the activities of ROS scavenging enzymes were measured by a spectrophotometer analysis. The results showed that barley seed germinated very poorly at 35 ℃, and this inhibitive effect could be overcome by pretreatment at 0 ℃. The MDA content varied, depending on the temperature at which seeds germinated, while barley seeds pretreated at 0 ℃ did not change the MDA content. Compared with seeds germinated directly at 35 ℃, the seeds pretreated first at 0 ℃ and then germinated at 35 ℃ had markedly increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR). The SOD and APX activities of seeds germinated at 35 ℃ after 0 ℃-pretreatment were even substantially higher than those at 25 ℃, and GR activity was similar to that at 25 ℃, at which the highest germination performance of barley seeds was achieved. These results indicate that low-temperature pretreatment can markedly increase the tolerance of barley seed to high temperature during germination, this being related to the increase in ROS scavenging enzyme activity. This may provide a new method for increasing seed germination under stress environments, and may be an excellent model system for the study of cross-tolerance.展开更多
基金Project (No. 30870223) supported by the National Natural Science Foundation of China
文摘A number of studies have shown the existence of cross-tolerance in plants, but the physiological mechanism is poorly understood. In this study, we used the germination of barley seeds as a system to investigate the cross-tolerance of low-temperature pretreatment to high-temperature stress and the possible involvement of reactive oxygen species (ROS) scavenging enzymes in the cross-tolerance. After pretreatment at 0 ℃ for different periods of time, barley seeds were germinated at 35 ℃, and the content of malondialdehyde (MDA) and the activities of ROS scavenging enzymes were measured by a spectrophotometer analysis. The results showed that barley seed germinated very poorly at 35 ℃, and this inhibitive effect could be overcome by pretreatment at 0 ℃. The MDA content varied, depending on the temperature at which seeds germinated, while barley seeds pretreated at 0 ℃ did not change the MDA content. Compared with seeds germinated directly at 35 ℃, the seeds pretreated first at 0 ℃ and then germinated at 35 ℃ had markedly increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR). The SOD and APX activities of seeds germinated at 35 ℃ after 0 ℃-pretreatment were even substantially higher than those at 25 ℃, and GR activity was similar to that at 25 ℃, at which the highest germination performance of barley seeds was achieved. These results indicate that low-temperature pretreatment can markedly increase the tolerance of barley seed to high temperature during germination, this being related to the increase in ROS scavenging enzyme activity. This may provide a new method for increasing seed germination under stress environments, and may be an excellent model system for the study of cross-tolerance.