[Objective] The aim was to improve part of auto-control system of aquatic seedling breeding and to lay foundation for highly-efficient and stable use of the sys- tem. [Method] The executive and drive modules of the au...[Objective] The aim was to improve part of auto-control system of aquatic seedling breeding and to lay foundation for highly-efficient and stable use of the sys- tem. [Method] The executive and drive modules of the auto-control system were im- proved, after which real-time monitor, data display and alarm modules were tested on time. [Result] In the test, for the improved system, stability and sensitivity were enhanced; different components matched better; transmitting electric resistanc6 was reduced. [Conclusion] The research provides references for auto-control of water temperature and dissolved oxygen, and faults clearing in aquatic seedling breeding.展开更多
Studies were initiated for two consecutive years to find out the effect of time of transplanting and seedlings hill^-l on the productivity of rice in Dera Ismail Khan district of North West Frontier Province (NWFP),...Studies were initiated for two consecutive years to find out the effect of time of transplanting and seedlings hill^-l on the productivity of rice in Dera Ismail Khan district of North West Frontier Province (NWFP), Pakistan. The experiment was laid out in a randomized complete block design with split plot arrangements. Main plots consisted of four transplanting dates viz. 20th and 27th of June and 4th and 1 lth of July while sub-plots contained 1, 2, 3 or 4 seedlings hill^-1. Among transplanting dates, June 20th planted crop gave highest paddy yield and net return with I seedling hill^-1. It explains that the use of more seedlings hill^-1 not only adds to cost but is also a mere wastage of natural resources. Based on research findings, we conclude that the use of I seedling hill^-1 is most appropriate for timely sowing otherwise 4 seedlings hill^-1 should be used to compensate for the yield gap in late transplanted rice.展开更多
文摘[Objective] The aim was to improve part of auto-control system of aquatic seedling breeding and to lay foundation for highly-efficient and stable use of the sys- tem. [Method] The executive and drive modules of the auto-control system were im- proved, after which real-time monitor, data display and alarm modules were tested on time. [Result] In the test, for the improved system, stability and sensitivity were enhanced; different components matched better; transmitting electric resistanc6 was reduced. [Conclusion] The research provides references for auto-control of water temperature and dissolved oxygen, and faults clearing in aquatic seedling breeding.
文摘Studies were initiated for two consecutive years to find out the effect of time of transplanting and seedlings hill^-l on the productivity of rice in Dera Ismail Khan district of North West Frontier Province (NWFP), Pakistan. The experiment was laid out in a randomized complete block design with split plot arrangements. Main plots consisted of four transplanting dates viz. 20th and 27th of June and 4th and 1 lth of July while sub-plots contained 1, 2, 3 or 4 seedlings hill^-1. Among transplanting dates, June 20th planted crop gave highest paddy yield and net return with I seedling hill^-1. It explains that the use of more seedlings hill^-1 not only adds to cost but is also a mere wastage of natural resources. Based on research findings, we conclude that the use of I seedling hill^-1 is most appropriate for timely sowing otherwise 4 seedlings hill^-1 should be used to compensate for the yield gap in late transplanted rice.