The full-length annexin gene,MtAnn3,of Medicago truncatula was cloned by 5' RACE.Compared with typical annexins,which contain a head domain and four homologous repeats in the conserved core domain,the MtAnn3 prote...The full-length annexin gene,MtAnn3,of Medicago truncatula was cloned by 5' RACE.Compared with typical annexins,which contain a head domain and four homologous repeats in the conserved core domain,the MtAnn3 protein has only one repeat in the core domain.MtAnn3 can bind cell membranes when transiently expressed in onion epidermal cells.Agrobacterium rhizogenes-mediated transformation of MtAnn3 into Medicago roots revealed that overexpression of the gene can change the polarity of root hair growth in Ca2+-free medium.The plant hormone cytokinin was able to upregulate the expression of MtAnn3.While MtAnn3 transcripts were detected in young nodules,expression was not nodule-specific,and could be detected at high levels in the roots,stems and leaves as well.展开更多
基金supported by the National Natural Science Foundation of China (30770171)the Shanghai Natural Science Foundation(05ZR14135)
文摘The full-length annexin gene,MtAnn3,of Medicago truncatula was cloned by 5' RACE.Compared with typical annexins,which contain a head domain and four homologous repeats in the conserved core domain,the MtAnn3 protein has only one repeat in the core domain.MtAnn3 can bind cell membranes when transiently expressed in onion epidermal cells.Agrobacterium rhizogenes-mediated transformation of MtAnn3 into Medicago roots revealed that overexpression of the gene can change the polarity of root hair growth in Ca2+-free medium.The plant hormone cytokinin was able to upregulate the expression of MtAnn3.While MtAnn3 transcripts were detected in young nodules,expression was not nodule-specific,and could be detected at high levels in the roots,stems and leaves as well.