To lower the cost of polyketone synthesis, rare earth coordinate catalyst was introduced to the copolymerization of carbon monoxide (CO) and styrene (ST) to synthesize aliphatic polyketone STCO. The catalytic syst...To lower the cost of polyketone synthesis, rare earth coordinate catalyst was introduced to the copolymerization of carbon monoxide (CO) and styrene (ST) to synthesize aliphatic polyketone STCO. The catalytic system was composed of rare earth neodymium acetate, yttrium acetate, 2,2'-bipyridine, p-toluensulfonic acid, cupric p-toluensulfonate, and 1 ,4-benzoquinone. The catalyst and the copolymer were characterized by infrared spectrum and X-ray photoelectron spectroscopy respectively. The effects of each component of catalytic system and the kinds of rare earth acetates on catalytic activity of copolymerization were investigated. The results show that the proposed rare earth has distinct catalytic activity in the copolymerization of CO and ST and the maximum activity can reach 303.3 gSTCO/(mol·h).展开更多
基金Supported by National Natural Science Foundation of China (No. 20476080).
文摘To lower the cost of polyketone synthesis, rare earth coordinate catalyst was introduced to the copolymerization of carbon monoxide (CO) and styrene (ST) to synthesize aliphatic polyketone STCO. The catalytic system was composed of rare earth neodymium acetate, yttrium acetate, 2,2'-bipyridine, p-toluensulfonic acid, cupric p-toluensulfonate, and 1 ,4-benzoquinone. The catalyst and the copolymer were characterized by infrared spectrum and X-ray photoelectron spectroscopy respectively. The effects of each component of catalytic system and the kinds of rare earth acetates on catalytic activity of copolymerization were investigated. The results show that the proposed rare earth has distinct catalytic activity in the copolymerization of CO and ST and the maximum activity can reach 303.3 gSTCO/(mol·h).