A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/wate...A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/water with the catalysts as stabilizers. With the HDPA-Fe2 O3/Al2 O3 as the basic catalyst, a series of transition metals, such as Mn, Co, Ni, Cu, Cr, Mo, V, and Ti, was respectively doped to the basic catalyst to modify the performance of the catalytic system, in expectation of influencing the mobility of the lattice oxygen species in the oxide catalysts. Under normally working conditions of the catalytic system, the nanoparticles of catalysts located themselves at the interface between the oil and water phases, constituting the Pickering emulsion. Both the doped iron oxide and its surface adsorbed hexadecylphosphate molecules were essential to the catalytic system for excellent performances with high toluene conversions as well as the exclusive selectivity to benzaldehyde. Under optimal conditions, ~83% of toluene conversion and >99% selectivity to benzaldehyde were obtained, using molecular oxygen as oxidant and HDPA-(Fe2 O3-Ni O)/Al2 O3 as the catalyst. This process is green and low cost to produce high quality benzaldehyde from O2 oxidation of toluene.展开更多
The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demon...The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demonstrate the enzyme‐like mechanism of the reaction over hexadecylphosphateacid(HDPA)‐bonded nano‐oxides,which appear to interact with toluene through specific recognition.The active sites of the catalyst are related to the ability of HDPA to change its bonding to theoxides between monodentate and bidentate during the reaction cycle.This greatly enhances themobility of the crystal oxygen or the reactivity of the catalyst,specifically in toluene transformations.The catalytic cycle of the catalyst is similar to that of methane monooxygenase.In thepresence of catalyst and through O_(2)oxidation,the conversion of toluene to benzaldehyde is initiatedat 70°C.We envision that this novel mechanism reveals alternatives for an attractive route to designhigh‐performance catalysts with bioinspired structures.展开更多
基金supported by the National Natural Science Foundation of China(91434101,91745108)the Ministry of Science and Technology of the People’s Republic of China(2017YFB0702900)~~
文摘A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/water with the catalysts as stabilizers. With the HDPA-Fe2 O3/Al2 O3 as the basic catalyst, a series of transition metals, such as Mn, Co, Ni, Cu, Cr, Mo, V, and Ti, was respectively doped to the basic catalyst to modify the performance of the catalytic system, in expectation of influencing the mobility of the lattice oxygen species in the oxide catalysts. Under normally working conditions of the catalytic system, the nanoparticles of catalysts located themselves at the interface between the oil and water phases, constituting the Pickering emulsion. Both the doped iron oxide and its surface adsorbed hexadecylphosphate molecules were essential to the catalytic system for excellent performances with high toluene conversions as well as the exclusive selectivity to benzaldehyde. Under optimal conditions, ~83% of toluene conversion and >99% selectivity to benzaldehyde were obtained, using molecular oxygen as oxidant and HDPA-(Fe2 O3-Ni O)/Al2 O3 as the catalyst. This process is green and low cost to produce high quality benzaldehyde from O2 oxidation of toluene.
文摘The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demonstrate the enzyme‐like mechanism of the reaction over hexadecylphosphateacid(HDPA)‐bonded nano‐oxides,which appear to interact with toluene through specific recognition.The active sites of the catalyst are related to the ability of HDPA to change its bonding to theoxides between monodentate and bidentate during the reaction cycle.This greatly enhances themobility of the crystal oxygen or the reactivity of the catalyst,specifically in toluene transformations.The catalytic cycle of the catalyst is similar to that of methane monooxygenase.In thepresence of catalyst and through O_(2)oxidation,the conversion of toluene to benzaldehyde is initiatedat 70°C.We envision that this novel mechanism reveals alternatives for an attractive route to designhigh‐performance catalysts with bioinspired structures.