Two title compounds, 4,4?diformyl-diphenoxyethane (compound 1, C16H14O4) and 4,4?4创-triformyl-triphenoxytriethylamine (compound 2, C27H27NO6), were synthesized by condensation of 4-hydroxybenzaldehyde with 1,2-dichlo...Two title compounds, 4,4?diformyl-diphenoxyethane (compound 1, C16H14O4) and 4,4?4创-triformyl-triphenoxytriethylamine (compound 2, C27H27NO6), were synthesized by condensation of 4-hydroxybenzaldehyde with 1,2-dichloroethane and tris(2-chloroethyl)amine, respectively in dimethyl formamide in the presence of anhydrous potassium carbonate. The crystal data are: monoclinic, P21/c, a = 7.571(2), b = 12.608(3), c = 7.357(2) ? b = 105.823(6)? V = 675.7(2) 3, Mr = 270.3, Z = 2, Dc = 1.328 g/cm3, F(000) = 284, m(MoKa) = 0.096 mm-1, R = 0.0537 and wR = 0.2189 for compound 1; and monoclinic, P21/n, a = 11.7162(6), b = 9.0042(6), c = 22.908(2) ? b = 99.505(1)? V = 2383.5(3) ?, Mr = 461.50, Z = 4, Dc = 1.286 g/cm3, F(000)= 976, m(MoKa) = 0.091 mm-1, R = 0.0464 and wR = 0.1462 for compound 2. The molecule of compound 1 (dialdehyde) is located at the crystallographic inversion center nearby the midpoint of C(8)C(8A) single bond. The three chains in the molecule of compound 2 (trialdehyde) are of non-crystallographic pseudo-C3 symmetry, and each of them is quite planar.展开更多
Betulinic acid, a triterpenoid found in many plant species, has attracted attention due to its important pharmacological properties, such as anti-cancer and anti-HIV activities. In order to obtain derivatives potentia...Betulinic acid, a triterpenoid found in many plant species, has attracted attention due to its important pharmacological properties, such as anti-cancer and anti-HIV activities. In order to obtain derivatives potentially useful for detailed pharmacological studies, betulinic acid derivatives were synthesized by reaction of betulinic acid with benzoyl chloride and with acetic anhydride using lipase as catalyst. Enzyme-catalyzed of betulinic acid with benzoyl chloride converted betulinic acid into 3β-benzoil-lup-20(29)-ene-28-oic acid ester (BCL) whereas with acetic anhydride converted betulinic acid into 3β-acetoxy-lup-20(29)-ene-28-oic acid ester (BAA). The BAA then underwent further reaction with l-decanol to produce 3β-acetoxy-lup-20(29)-ene-28 decanoate (BAAD). Betulinic acid derivatives prepared were tested for cytotoxic activity on three cancer cell lines in vitro: all tested compounds showed stronger cytotoxic activity than betulinic acid,展开更多
基金The authors thank the financial support of the Natural Science Foundation of Fujian Province (No. E0110010)
文摘Two title compounds, 4,4?diformyl-diphenoxyethane (compound 1, C16H14O4) and 4,4?4创-triformyl-triphenoxytriethylamine (compound 2, C27H27NO6), were synthesized by condensation of 4-hydroxybenzaldehyde with 1,2-dichloroethane and tris(2-chloroethyl)amine, respectively in dimethyl formamide in the presence of anhydrous potassium carbonate. The crystal data are: monoclinic, P21/c, a = 7.571(2), b = 12.608(3), c = 7.357(2) ? b = 105.823(6)? V = 675.7(2) 3, Mr = 270.3, Z = 2, Dc = 1.328 g/cm3, F(000) = 284, m(MoKa) = 0.096 mm-1, R = 0.0537 and wR = 0.2189 for compound 1; and monoclinic, P21/n, a = 11.7162(6), b = 9.0042(6), c = 22.908(2) ? b = 99.505(1)? V = 2383.5(3) ?, Mr = 461.50, Z = 4, Dc = 1.286 g/cm3, F(000)= 976, m(MoKa) = 0.091 mm-1, R = 0.0464 and wR = 0.1462 for compound 2. The molecule of compound 1 (dialdehyde) is located at the crystallographic inversion center nearby the midpoint of C(8)C(8A) single bond. The three chains in the molecule of compound 2 (trialdehyde) are of non-crystallographic pseudo-C3 symmetry, and each of them is quite planar.
文摘Betulinic acid, a triterpenoid found in many plant species, has attracted attention due to its important pharmacological properties, such as anti-cancer and anti-HIV activities. In order to obtain derivatives potentially useful for detailed pharmacological studies, betulinic acid derivatives were synthesized by reaction of betulinic acid with benzoyl chloride and with acetic anhydride using lipase as catalyst. Enzyme-catalyzed of betulinic acid with benzoyl chloride converted betulinic acid into 3β-benzoil-lup-20(29)-ene-28-oic acid ester (BCL) whereas with acetic anhydride converted betulinic acid into 3β-acetoxy-lup-20(29)-ene-28-oic acid ester (BAA). The BAA then underwent further reaction with l-decanol to produce 3β-acetoxy-lup-20(29)-ene-28 decanoate (BAAD). Betulinic acid derivatives prepared were tested for cytotoxic activity on three cancer cell lines in vitro: all tested compounds showed stronger cytotoxic activity than betulinic acid,