Homogeneous and heterogeneous types of catalysis are frequently considered as separate disciplines or even opposed to each other.In the present work,a new type of mixed het-ero-/homogeneous catalysis was demonstrated ...Homogeneous and heterogeneous types of catalysis are frequently considered as separate disciplines or even opposed to each other.In the present work,a new type of mixed het-ero-/homogeneous catalysis was demonstrated for the case of selective alkylarene oxidation by molecular oxygen.The proposed catalytic system consists of two widely available components:N-hydroxyphthalimide(NHPI,a homogeneous organocatalyst for free-radical chain reactions)and nanosized TiO_(2)(heterogeneous UV-active photoredox catalyst).The interaction of NHPI with TiO_(2) allows for a shift from UV to visible light photoredox activity and generation of phthalimide-N-oxyl(PINO)radicals that diffuse into the solution where NHPI/PINO-catalyzed free-radical chain reaction can proceed without the additional light input providing a fundamental increase in energy efficiency.The NHPI/TiO_(2) ratio controls the selectivity of oxidation affording preferential formation of hydroperoxide or ketone from alkylarene.展开更多
Selective oxidation with molecular oxygen as the sole oxidant under mild conditions is of crucialimportance for the long‐term sustainable exploitation of available feedstocks and the formation ofrequired intermediate...Selective oxidation with molecular oxygen as the sole oxidant under mild conditions is of crucialimportance for the long‐term sustainable exploitation of available feedstocks and the formation ofrequired intermediates for organic synthesis and industrial processes.Among the developed oxidationprotocols,innovative strategies using hydroxyimide organocatalysts in combination with metallicor metal‐free cocatalysts have attracted much attention because of the good activities andselectivities of such catalysts in the oxo functionalization of hydrocarbons.This method is based onthe reaction using N‐hydroxyphthalimide,which was first reported by Ishii’s group in the1990s.Although the important and wide‐ranging applications of such catalysts have been summarizedrecently,there are no reviews that focus solely on oxidation strategies using multi‐nitroxy organocatalysts,which have interesting properties and high reactivities.This review covers the concisesynthetic methods and mechanistic profiles of known multi‐nitroxy organocatalysts and summarizessignificant advances in their use in efficient aerobic oxidation.Based on a combination of experimentaland theoretical results,guidelines for the future rational design of multi‐nitroxy organocatalystsare proposed,and the properties of various model multi‐nitroxy organocatalysts are predicted.The present overview of the advantages,limitations,and potential applications of multi‐nitroxyorganocatalysts can provide useful tools for researchers in the field of selective oxidation.展开更多
Photodissociation of p-aminobenzoic acid at 266 nm was investigated by probing the nascent OH photoproduct employing the laser-induced fluorescence technique. It was found that the nascent OH radical was vibrationally...Photodissociation of p-aminobenzoic acid at 266 nm was investigated by probing the nascent OH photoproduct employing the laser-induced fluorescence technique. It was found that the nascent OH radical was vibrationally cold and its rotational state distribution conformed to be a Boltzmann behavior, characterized by a rotational temperature of 1040±110 K. The rotational energy of OH was determined to be 8.78±0.84 kJ/mol. Between the two spinorbit states of OH, ^2Ⅱ3/2 and ^2Ⅱ1/2, the former was found to be preferentially populated. The distribution of the II(A') state for the A-doublet was dominant. Finally, a probable mechanism for the formation of OH produced from the photodissociation of p-aminobenzoic acid is discussed.展开更多
Diphenyl chlorophosphate (DPCP), which acts as a simulant of nerve warfare agent, is decontaminated by ozone in this study. Experimental results show that DPCP can be degraded rapidly by ozone. In the optimum workin...Diphenyl chlorophosphate (DPCP), which acts as a simulant of nerve warfare agent, is decontaminated by ozone in this study. Experimental results show that DPCP can be degraded rapidly by ozone. In the optimum working conditions, 99% 50 mg/L DPCP are degraded in 16min, and 30% total organic carbon of the solution is reduced. The free radical accelerant, Fe2+, and inhibitors, 2-propanol and tert-butanol significantly influence the degradation efficiency of DPCP, therefore, free radical is the most important oxidant for the DPCP degradation reaction in this system. Ozone can be decomposed to hydroxyl radical, which would attack DPCP to start the degradation reaction. Furthermore, parts of DPCP would be mineralized, and degradation of toluene probably is the controlling step of the mineralization of DPCP. Finally, the reaction pathways are predicted for the degradation of DPCP by ozone.展开更多
The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed...The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed. It was found that the proper H2O2/O3 molar ratio for the degradation of p-nitrotoluene was around 0.6, different pH values and the presence of t-butanol highly influenced the removal efficiency of p-nitrotoluene. 5-methyl-2-nitrophenol, 2-methyl-5-nitrophenol, (4-nitrophenyl) methanol, 5-(hydroxymethyl)-2-nitro phenol, acetic acid, 2-methylpropane diacid and 2-(hydroxylmethyl)propane diacid were identified as degradation intermediates and products through GC-MS. Radical reaction mechanism and degradation pathway were proposed based on the results of experiments. It is deduced that the benzene ring of p-nitrotoluene can be only destroyed by hydroxyl radicals through a polyhydroxy intermediate pathway. Then unstable polyhydroxy intermediates can be oxidized to different acids with low molecular weight rapidly.展开更多
文摘Homogeneous and heterogeneous types of catalysis are frequently considered as separate disciplines or even opposed to each other.In the present work,a new type of mixed het-ero-/homogeneous catalysis was demonstrated for the case of selective alkylarene oxidation by molecular oxygen.The proposed catalytic system consists of two widely available components:N-hydroxyphthalimide(NHPI,a homogeneous organocatalyst for free-radical chain reactions)and nanosized TiO_(2)(heterogeneous UV-active photoredox catalyst).The interaction of NHPI with TiO_(2) allows for a shift from UV to visible light photoredox activity and generation of phthalimide-N-oxyl(PINO)radicals that diffuse into the solution where NHPI/PINO-catalyzed free-radical chain reaction can proceed without the additional light input providing a fundamental increase in energy efficiency.The NHPI/TiO_(2) ratio controls the selectivity of oxidation affording preferential formation of hydroperoxide or ketone from alkylarene.
基金supported by the China Postdoctoral Science Foundation (2014M551746)~~
文摘Selective oxidation with molecular oxygen as the sole oxidant under mild conditions is of crucialimportance for the long‐term sustainable exploitation of available feedstocks and the formation ofrequired intermediates for organic synthesis and industrial processes.Among the developed oxidationprotocols,innovative strategies using hydroxyimide organocatalysts in combination with metallicor metal‐free cocatalysts have attracted much attention because of the good activities andselectivities of such catalysts in the oxo functionalization of hydrocarbons.This method is based onthe reaction using N‐hydroxyphthalimide,which was first reported by Ishii’s group in the1990s.Although the important and wide‐ranging applications of such catalysts have been summarizedrecently,there are no reviews that focus solely on oxidation strategies using multi‐nitroxy organocatalysts,which have interesting properties and high reactivities.This review covers the concisesynthetic methods and mechanistic profiles of known multi‐nitroxy organocatalysts and summarizessignificant advances in their use in efficient aerobic oxidation.Based on a combination of experimentaland theoretical results,guidelines for the future rational design of multi‐nitroxy organocatalystsare proposed,and the properties of various model multi‐nitroxy organocatalysts are predicted.The present overview of the advantages,limitations,and potential applications of multi‐nitroxyorganocatalysts can provide useful tools for researchers in the field of selective oxidation.
基金V. ACKNOWLEDGMENTS This work was supported by tile National Natural Science Foundation of China (No.20721004 and No.20833008). Can-hua Zhou sincerely wishes to express thanks to Dr. Ju-long Sun for assistance in the experiments.
文摘Photodissociation of p-aminobenzoic acid at 266 nm was investigated by probing the nascent OH photoproduct employing the laser-induced fluorescence technique. It was found that the nascent OH radical was vibrationally cold and its rotational state distribution conformed to be a Boltzmann behavior, characterized by a rotational temperature of 1040±110 K. The rotational energy of OH was determined to be 8.78±0.84 kJ/mol. Between the two spinorbit states of OH, ^2Ⅱ3/2 and ^2Ⅱ1/2, the former was found to be preferentially populated. The distribution of the II(A') state for the A-doublet was dominant. Finally, a probable mechanism for the formation of OH produced from the photodissociation of p-aminobenzoic acid is discussed.
基金This research was supported by National Natural Science Foundation of China (No. 50276025).
文摘Diphenyl chlorophosphate (DPCP), which acts as a simulant of nerve warfare agent, is decontaminated by ozone in this study. Experimental results show that DPCP can be degraded rapidly by ozone. In the optimum working conditions, 99% 50 mg/L DPCP are degraded in 16min, and 30% total organic carbon of the solution is reduced. The free radical accelerant, Fe2+, and inhibitors, 2-propanol and tert-butanol significantly influence the degradation efficiency of DPCP, therefore, free radical is the most important oxidant for the DPCP degradation reaction in this system. Ozone can be decomposed to hydroxyl radical, which would attack DPCP to start the degradation reaction. Furthermore, parts of DPCP would be mineralized, and degradation of toluene probably is the controlling step of the mineralization of DPCP. Finally, the reaction pathways are predicted for the degradation of DPCP by ozone.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50378028)
文摘The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed. It was found that the proper H2O2/O3 molar ratio for the degradation of p-nitrotoluene was around 0.6, different pH values and the presence of t-butanol highly influenced the removal efficiency of p-nitrotoluene. 5-methyl-2-nitrophenol, 2-methyl-5-nitrophenol, (4-nitrophenyl) methanol, 5-(hydroxymethyl)-2-nitro phenol, acetic acid, 2-methylpropane diacid and 2-(hydroxylmethyl)propane diacid were identified as degradation intermediates and products through GC-MS. Radical reaction mechanism and degradation pathway were proposed based on the results of experiments. It is deduced that the benzene ring of p-nitrotoluene can be only destroyed by hydroxyl radicals through a polyhydroxy intermediate pathway. Then unstable polyhydroxy intermediates can be oxidized to different acids with low molecular weight rapidly.