Synthesis and kinetics of dichloro-methoxybenzenes were studied from 1,2,4-trichlorobenzene and sodium methoxide in a temperature range of 353--383 K. Effects of molar ratio of reactants, solvent and reaction temperat...Synthesis and kinetics of dichloro-methoxybenzenes were studied from 1,2,4-trichlorobenzene and sodium methoxide in a temperature range of 353--383 K. Effects of molar ratio of reactants, solvent and reaction temperature were investigated. Reaction products include three isomers. The order of selectivity for the three isomers was 1,4-dichloro-2-methoxybenzene〉〉2,4-dichoro-1-methoxybenzene〉,2-dichoro-4-methoxybenzene. Kinetic equations for the parallel liquid-solid interface reaction between 1,2,4-trichlorobenzene and sodium methoxide were established in the absence of catalyst. Kinetic parameters such as the pre-exponential factors and the activation energy were deter- mined with the Arrhenius equation.展开更多
An efficient catalytic system consisting of vanadyl sulfate/sodium nitrite was disclosed previously for the oxidation of benzylic alcohols into aldehydes with molecular oxygen.However,the roles of catalyst components ...An efficient catalytic system consisting of vanadyl sulfate/sodium nitrite was disclosed previously for the oxidation of benzylic alcohols into aldehydes with molecular oxygen.However,the roles of catalyst components were not investigated.In this paper,we examined catalytic oxidation of benzyl alcohol as a model reaction,especially by infrared spectroscopy.The role of each component is discussed including nitrite,vanadyl,sulphate,and water.Sodium nitrite could be converted into nitrate and nitric acid.The vanadium(IV)could be smoothly oxidized into vanadium(V)under mild and acidic conditions without any organic ligands.The transformation of sulfate and bisulfate,the cessation of an induction period,and the oxidation of benzyl alcohol were closely interrelated.The multiple roles of water are discussed,including reduction of the induction period,participation in redox cycles of nitric compounds,deactivation of vanadium,and as a byproduct of oxidation.This study contributes to further development of aerobic oxidation using vanadium based catalysts.展开更多
文摘Synthesis and kinetics of dichloro-methoxybenzenes were studied from 1,2,4-trichlorobenzene and sodium methoxide in a temperature range of 353--383 K. Effects of molar ratio of reactants, solvent and reaction temperature were investigated. Reaction products include three isomers. The order of selectivity for the three isomers was 1,4-dichloro-2-methoxybenzene〉〉2,4-dichoro-1-methoxybenzene〉,2-dichoro-4-methoxybenzene. Kinetic equations for the parallel liquid-solid interface reaction between 1,2,4-trichlorobenzene and sodium methoxide were established in the absence of catalyst. Kinetic parameters such as the pre-exponential factors and the activation energy were deter- mined with the Arrhenius equation.
基金financially supported by the National Natural Science Foundation of China(21203180,21233008)
文摘An efficient catalytic system consisting of vanadyl sulfate/sodium nitrite was disclosed previously for the oxidation of benzylic alcohols into aldehydes with molecular oxygen.However,the roles of catalyst components were not investigated.In this paper,we examined catalytic oxidation of benzyl alcohol as a model reaction,especially by infrared spectroscopy.The role of each component is discussed including nitrite,vanadyl,sulphate,and water.Sodium nitrite could be converted into nitrate and nitric acid.The vanadium(IV)could be smoothly oxidized into vanadium(V)under mild and acidic conditions without any organic ligands.The transformation of sulfate and bisulfate,the cessation of an induction period,and the oxidation of benzyl alcohol were closely interrelated.The multiple roles of water are discussed,including reduction of the induction period,participation in redox cycles of nitric compounds,deactivation of vanadium,and as a byproduct of oxidation.This study contributes to further development of aerobic oxidation using vanadium based catalysts.