Efficient conversion of lignin to fine chemicals and biofuel become more and more attractive in biorefinery. In this work, we used a series of silica-alumina catalysts (i.e., SiO2-Al2O3, HY, Hβ, and HZSM-5) to degr...Efficient conversion of lignin to fine chemicals and biofuel become more and more attractive in biorefinery. In this work, we used a series of silica-alumina catalysts (i.e., SiO2-Al2O3, HY, Hβ, and HZSM-5) to degrade lignin into arenes and phenols. The relationship between the catalyst structure and lignin depolymerization performance was investigated. The results showed that both acidity and pore size of the catalyst could influence the conversion of lignin. In the volatilizable product, phenols were identified as the main phenolic monomers via gas chromatography-mass spectrometer. SIO2-Al2O3 was the most efficient catalyst, giving 90.96% degree of conversion, 12.91% yield of phenols, and 2.41% yield of arenes in ethanol at 280℃ for 4 h. The Fourier transform infrared spectroscopy and ^1H nuclear magnetic resonance spectroscopy analysis demonstrated that deoxygenation and alkylation occurred in this process. The effect of solvents was also investigated and the results showed that ethanol was the most efficient solvent.展开更多
Experiments were conducted for the extraction of phenols from the phenol fraction obtained from the coal tar distillate. The phenol fraction for the present investigation has been procured from Visakhapatnam Steel Pla...Experiments were conducted for the extraction of phenols from the phenol fraction obtained from the coal tar distillate. The phenol fraction for the present investigation has been procured from Visakhapatnam Steel Plant, Visakhapatnam whose composition is known. The phenol fraction from coal tar distillate can be treated for extracting phenols using caustic soda. An attempt has been made to find out whether the existing practice of using only 8%-15% can be modified by increasing the strength of sodium hydroxide and also explore the possibilities of substituting the sodium hydroxide with KOH as an extractant. The different streams of liquids obtained during experimentation have been analyzed by gas chromatograph. Salient features of the study are that higher concentrations of the alkali significantly improved the separation efficiencies of phenols and also regenerate the phenolate with higher phenol content. Increase in the alkali strength has greatly improved the separation as well as the phenol content in the regenerated phenols. Disposal of effluents containing phenols may lead to environmental problem of ground water pollution and the study throws a light on the removal of phenols from the effluents to the extent possible by using higher strength alkali solutions.展开更多
文摘Efficient conversion of lignin to fine chemicals and biofuel become more and more attractive in biorefinery. In this work, we used a series of silica-alumina catalysts (i.e., SiO2-Al2O3, HY, Hβ, and HZSM-5) to degrade lignin into arenes and phenols. The relationship between the catalyst structure and lignin depolymerization performance was investigated. The results showed that both acidity and pore size of the catalyst could influence the conversion of lignin. In the volatilizable product, phenols were identified as the main phenolic monomers via gas chromatography-mass spectrometer. SIO2-Al2O3 was the most efficient catalyst, giving 90.96% degree of conversion, 12.91% yield of phenols, and 2.41% yield of arenes in ethanol at 280℃ for 4 h. The Fourier transform infrared spectroscopy and ^1H nuclear magnetic resonance spectroscopy analysis demonstrated that deoxygenation and alkylation occurred in this process. The effect of solvents was also investigated and the results showed that ethanol was the most efficient solvent.
文摘Experiments were conducted for the extraction of phenols from the phenol fraction obtained from the coal tar distillate. The phenol fraction for the present investigation has been procured from Visakhapatnam Steel Plant, Visakhapatnam whose composition is known. The phenol fraction from coal tar distillate can be treated for extracting phenols using caustic soda. An attempt has been made to find out whether the existing practice of using only 8%-15% can be modified by increasing the strength of sodium hydroxide and also explore the possibilities of substituting the sodium hydroxide with KOH as an extractant. The different streams of liquids obtained during experimentation have been analyzed by gas chromatograph. Salient features of the study are that higher concentrations of the alkali significantly improved the separation efficiencies of phenols and also regenerate the phenolate with higher phenol content. Increase in the alkali strength has greatly improved the separation as well as the phenol content in the regenerated phenols. Disposal of effluents containing phenols may lead to environmental problem of ground water pollution and the study throws a light on the removal of phenols from the effluents to the extent possible by using higher strength alkali solutions.