N,N'-bis(2,4-dinitrobenzofuroxan)-3,5-dinitro-2,6-diaminopy- ridine has been synthesized from 2,6-diaminopyridine and trinitrodich- lorobenzene.For this compound,the structure has been determined by ele- mental an...N,N'-bis(2,4-dinitrobenzofuroxan)-3,5-dinitro-2,6-diaminopy- ridine has been synthesized from 2,6-diaminopyridine and trinitrodich- lorobenzene.For this compound,the structure has been determined by ele- mental analysis,IR,HNMR and MS spectroscopy.展开更多
A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro- genation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocompos...A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro- genation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocomposite catalyst had a hydrogen atom density of 0.65/nm2. It was active for hydrogenation but its activity was inferior to the hydrogen adsorbed on a Ni/Al2O3 catalyst. Catalytic tests showed that this catalyst possessed a lower activity than Ni/AhO3 but the selectivity towards p-chloroaniline was above 99.9%. Even at high conversion, the catalyst maintained high selectivity, which was attributed to the unique surface property of the catalyst and the absence of a site for the adsorption ofp-chloronitrobenzene, which prevents the C-Cl bond from breaking.展开更多
The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffrac...The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), temperature-programmed desorption of hydrogen (H2-TPD) and activity evaluation, the physico-chemical and catalytic properties of the catalysts were investigated. Among the catalysts tested, the SiO2 supported nickel catalyst showed the highest activity and selectivity towards m-phenylenediamine, over which 97.3% m-dinitrobenzene conversion and 95.1% m-phenylenediamine yield were obtained at 373K under hydrogen pressure of 2.6MPa after reaction for 6 h when using ethanol as solvent. Although TiO2 and diatomite supported nickel catalysts also presented high activity, they had lower selectivity towards m-phenylenediamine. As for γ-Al2O3 and MgO supported catalysts were almost inactive for the object reaction. It was shown that both the activity and selectivity of the catalysts were strongly depended on the interaction between nickel and the support. The higher activities of Ni/SiO2, Ni/TiO2 and Ni/diatomite could be attributed to the weaker metal-support interaction, on which Ni species presented as crystallized Ni metal particles. On the other hand, there existed strong metal-support interaction in Ni/MgO and Ni γ-Al2O3, which causes these catalysts more difficult to be reduced and the availability of Ni active sites decreased, resulting in their low catalytic activity.展开更多
The kinetics of catalytic hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichloroazoxybenzene on platinum/carbon catalyst is investigated in a slurry reactor with the temperature range of 313-343 K, and orthochlor...The kinetics of catalytic hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichloroazoxybenzene on platinum/carbon catalyst is investigated in a slurry reactor with the temperature range of 313-343 K, and orthochloroaniline is formed as a byproduct. Models based on Rideal-Eley and Langmuir-Hinshelwood mechanism have been proposed based on the rate data and the kinetic regime. The former model can be used to fit the experimental data better. Reaction controlling steps are physical adsorption of hydrogen and adsorbed ortho-nitrochlorobenzene reacted on the surface of catalyst.展开更多
ABSTRACT Urania-paUadium-graphene nanohybrids were synthesized via a solvothermal process in ethylene glycol. With the solvothermal treatment, the Pd nanocrystals sur- rounded by well-crystallized urania supported on ...ABSTRACT Urania-paUadium-graphene nanohybrids were synthesized via a solvothermal process in ethylene glycol. With the solvothermal treatment, the Pd nanocrystals sur- rounded by well-crystallized urania supported on graphene oxide was obtained. This ternary hybrid showed consid- erably higher catalytic activity than palladium-graphene hybrids toward the reduction of 4-nitrophenol by NaBH4. Besides the smaller sizes of palladium nanoparticles in the ternary hybrids, in which the aggregation of Pd nanoparticles was prevented by urania, the charge transfer between the nano-structured Pd and urania may also contribute to the enhancement of catalytic activity by offering more active sites for adsorption and reaction.展开更多
文摘N,N'-bis(2,4-dinitrobenzofuroxan)-3,5-dinitro-2,6-diaminopy- ridine has been synthesized from 2,6-diaminopyridine and trinitrodich- lorobenzene.For this compound,the structure has been determined by ele- mental analysis,IR,HNMR and MS spectroscopy.
文摘A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro- genation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocomposite catalyst had a hydrogen atom density of 0.65/nm2. It was active for hydrogenation but its activity was inferior to the hydrogen adsorbed on a Ni/Al2O3 catalyst. Catalytic tests showed that this catalyst possessed a lower activity than Ni/AhO3 but the selectivity towards p-chloroaniline was above 99.9%. Even at high conversion, the catalyst maintained high selectivity, which was attributed to the unique surface property of the catalyst and the absence of a site for the adsorption ofp-chloronitrobenzene, which prevents the C-Cl bond from breaking.
文摘The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), temperature-programmed desorption of hydrogen (H2-TPD) and activity evaluation, the physico-chemical and catalytic properties of the catalysts were investigated. Among the catalysts tested, the SiO2 supported nickel catalyst showed the highest activity and selectivity towards m-phenylenediamine, over which 97.3% m-dinitrobenzene conversion and 95.1% m-phenylenediamine yield were obtained at 373K under hydrogen pressure of 2.6MPa after reaction for 6 h when using ethanol as solvent. Although TiO2 and diatomite supported nickel catalysts also presented high activity, they had lower selectivity towards m-phenylenediamine. As for γ-Al2O3 and MgO supported catalysts were almost inactive for the object reaction. It was shown that both the activity and selectivity of the catalysts were strongly depended on the interaction between nickel and the support. The higher activities of Ni/SiO2, Ni/TiO2 and Ni/diatomite could be attributed to the weaker metal-support interaction, on which Ni species presented as crystallized Ni metal particles. On the other hand, there existed strong metal-support interaction in Ni/MgO and Ni γ-Al2O3, which causes these catalysts more difficult to be reduced and the availability of Ni active sites decreased, resulting in their low catalytic activity.
文摘The kinetics of catalytic hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichloroazoxybenzene on platinum/carbon catalyst is investigated in a slurry reactor with the temperature range of 313-343 K, and orthochloroaniline is formed as a byproduct. Models based on Rideal-Eley and Langmuir-Hinshelwood mechanism have been proposed based on the rate data and the kinetic regime. The former model can be used to fit the experimental data better. Reaction controlling steps are physical adsorption of hydrogen and adsorbed ortho-nitrochlorobenzene reacted on the surface of catalyst.
基金supported by the Ministry of Science and Technology of China (2016YFA0201904)National Natural Science Foundation of China (21631002 and U1632119)
文摘ABSTRACT Urania-paUadium-graphene nanohybrids were synthesized via a solvothermal process in ethylene glycol. With the solvothermal treatment, the Pd nanocrystals sur- rounded by well-crystallized urania supported on graphene oxide was obtained. This ternary hybrid showed consid- erably higher catalytic activity than palladium-graphene hybrids toward the reduction of 4-nitrophenol by NaBH4. Besides the smaller sizes of palladium nanoparticles in the ternary hybrids, in which the aggregation of Pd nanoparticles was prevented by urania, the charge transfer between the nano-structured Pd and urania may also contribute to the enhancement of catalytic activity by offering more active sites for adsorption and reaction.