针对苹果叶片病害识别中传统卷积神经网络识别精度较低、收敛速度较慢等问题,提出了一种基于DTS-ResNet(ResNet based on dual transfer learning and squeeze-and-excitation block)的苹果叶片病害识别方法。该方法以ResNet为基础模型...针对苹果叶片病害识别中传统卷积神经网络识别精度较低、收敛速度较慢等问题,提出了一种基于DTS-ResNet(ResNet based on dual transfer learning and squeeze-and-excitation block)的苹果叶片病害识别方法。该方法以ResNet为基础模型,将注意力机制与残差模块相结合作为骨干网络以强化网络对重要特征信息的提取能力、提高识别准确率,并采用双迁移学习的训练方式加快模型的收敛速度。实验结果表明,所提出的方法的识别准确率达到98.73%,能够较好地识别苹果叶片病害。相较于一些传统的卷积神经网络,该模型收敛速度更快,拟合效果更好,且具有更高的识别精度。展开更多
为了准确、快速地检测作物叶部病害,提出一种基于自适应学习局部二值模式(adaptive learning local binary pattern,简称ALLBP)的苹果叶部病斑分割与检测方法。首先利用ALLBP获取正常叶片图像和病害叶片图像的特征差异,并确定病斑判断阈...为了准确、快速地检测作物叶部病害,提出一种基于自适应学习局部二值模式(adaptive learning local binary pattern,简称ALLBP)的苹果叶部病斑分割与检测方法。首先利用ALLBP获取正常叶片图像和病害叶片图像的特征差异,并确定病斑判断阈值,然后将待识别的叶片图像分割为大小相同的子块,再提取同样的特征与阈值进行比较,以判定各子块中是否有病斑。结果表明,该方法能够有效检测苹果病斑的分布特性,与局部二值模式(local binary pattern,简称LBP)和中心对称局部二值模式(center-symmetric local binary pattern,简称CS-LBP)相比,该方法具有更少的特征维数和更高的正确识别率。展开更多
文摘针对苹果叶片病害识别中传统卷积神经网络识别精度较低、收敛速度较慢等问题,提出了一种基于DTS-ResNet(ResNet based on dual transfer learning and squeeze-and-excitation block)的苹果叶片病害识别方法。该方法以ResNet为基础模型,将注意力机制与残差模块相结合作为骨干网络以强化网络对重要特征信息的提取能力、提高识别准确率,并采用双迁移学习的训练方式加快模型的收敛速度。实验结果表明,所提出的方法的识别准确率达到98.73%,能够较好地识别苹果叶片病害。相较于一些传统的卷积神经网络,该模型收敛速度更快,拟合效果更好,且具有更高的识别精度。
文摘为了准确、快速地检测作物叶部病害,提出一种基于自适应学习局部二值模式(adaptive learning local binary pattern,简称ALLBP)的苹果叶部病斑分割与检测方法。首先利用ALLBP获取正常叶片图像和病害叶片图像的特征差异,并确定病斑判断阈值,然后将待识别的叶片图像分割为大小相同的子块,再提取同样的特征与阈值进行比较,以判定各子块中是否有病斑。结果表明,该方法能够有效检测苹果病斑的分布特性,与局部二值模式(local binary pattern,简称LBP)和中心对称局部二值模式(center-symmetric local binary pattern,简称CS-LBP)相比,该方法具有更少的特征维数和更高的正确识别率。