The m-th order detrended Brownian motion is defined as the orthogonal component of projection of the standard Brownian motion onto the subspace spanned by polynomials of degree up to m. We obtain the Karhunen-Loeve ex...The m-th order detrended Brownian motion is defined as the orthogonal component of projection of the standard Brownian motion onto the subspace spanned by polynomials of degree up to m. We obtain the Karhunen-Loeve expansion for the process and establish a connection with the generalized (m-th order) Brownian bridge developed by MacNeill (1978) in the study of distributions of polynomial regression. The resulting distribution identity is also verified by a stochastic Fubini approach. As applications, large and small deviation asymptotic behaviors for the L2 norm are given.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.DL13BBX10)
文摘The m-th order detrended Brownian motion is defined as the orthogonal component of projection of the standard Brownian motion onto the subspace spanned by polynomials of degree up to m. We obtain the Karhunen-Loeve expansion for the process and establish a connection with the generalized (m-th order) Brownian bridge developed by MacNeill (1978) in the study of distributions of polynomial regression. The resulting distribution identity is also verified by a stochastic Fubini approach. As applications, large and small deviation asymptotic behaviors for the L2 norm are given.