研究了Van der Pol振子在宽带随机外部激励和宽带随机参数激励联合作用下的Hopf分叉.文中采用随机平均法将Van del Pol方程的幅值响应过程逼近为一维的Markov扩散过程.利用FPK方程的直接积分,得到了幅值响应的稳态概率密度函数.在此基础...研究了Van der Pol振子在宽带随机外部激励和宽带随机参数激励联合作用下的Hopf分叉.文中采用随机平均法将Van del Pol方程的幅值响应过程逼近为一维的Markov扩散过程.利用FPK方程的直接积分,得到了幅值响应的稳态概率密度函数.在此基础上,分析了系统在分叉点附近由于随机扰动的影响带来的系统局域行为的变化.从本文的研究中发现,非线性系统在随机外部激励以及两种不同的随机参数激励作用下,其分叉行为与确定性系统相比会有明显的变化。展开更多
文摘研究了Van der Pol振子在宽带随机外部激励和宽带随机参数激励联合作用下的Hopf分叉.文中采用随机平均法将Van del Pol方程的幅值响应过程逼近为一维的Markov扩散过程.利用FPK方程的直接积分,得到了幅值响应的稳态概率密度函数.在此基础上,分析了系统在分叉点附近由于随机扰动的影响带来的系统局域行为的变化.从本文的研究中发现,非线性系统在随机外部激励以及两种不同的随机参数激励作用下,其分叉行为与确定性系统相比会有明显的变化。