荷兰物理学家范德瓦尔斯(van der Waals,Johannes Diederik,1837—1923)(邮票V3a和V3b)1837年11月23日生于莱顿,他虽于1862年进入莱顿大学,但他主要还是靠自学成才。1873年他的论文《论液态和气态的连续性》首次引起人们的广泛...荷兰物理学家范德瓦尔斯(van der Waals,Johannes Diederik,1837—1923)(邮票V3a和V3b)1837年11月23日生于莱顿,他虽于1862年进入莱顿大学,但他主要还是靠自学成才。1873年他的论文《论液态和气态的连续性》首次引起人们的广泛注意,并因此获得了博士学位,为他一生的研究定下了基调。1877年,他被任命为阿姆斯特丹大学物理学教授,在那里干了30年才退休。展开更多
The van der Waals force originates from the electromagnetic interaction between quantum fluctuationinduced charges. It is a ubiquitous but subtle force which plays an important role and has a wide range of application...The van der Waals force originates from the electromagnetic interaction between quantum fluctuationinduced charges. It is a ubiquitous but subtle force which plays an important role and has a wide range of applications in surface related phenomena like adhesion, friction,and colloidal stability. Calculating the van der Waals force between closely spaced metallic nanoparticles is very challenging due to the strong concentration of electromagnetic fields at the nanometric gap. Especially, at such a small length scale, the macroscopic description of the dielectric properties no longer suffices. The diffuse nonlocal nature of the induced surface electrons which are smeared out near the boundary has to be considered. Here,we review the recent progress on using three-dimensional transformation optics to study the van der Waals forces between closely spaced nanostructures. Through mapping a seemingly asymmetric system to a more symmetric counterpart, transformation optics enables us to look into the behavior of van der Waals forces at extreme length scales,where the effect of nonlocality is found to dramatically weaken the van der Waals interactions.展开更多
High-precision sensing of vectorial forces has broad impact on both fundamental research and technological applications such as the examination of vacuum fluctuations and the detection of surface roughness of nanostru...High-precision sensing of vectorial forces has broad impact on both fundamental research and technological applications such as the examination of vacuum fluctuations and the detection of surface roughness of nanostructures.Recent years have witnessed much progress on sensing alternating electromagnetic forces for the rapidly advancing quantum technology-orders of magnitude improvement has been accomplished on the detection sensitivity with atomic sensors,whereas such high-precision measurements for static electromagnetic forces have rarely been demonstrated.Here,based on quantum atomic matter waves confined by a two-dimensional optical lattice,we perform precision measurement of static electromagnetic forces by imaging coherent wave mechanics in the reciprocal space.The lattice confinement causes a decoupling between real-space and reciprocal dynamics,and provides a rigid coordinate frame for calibrating the wavevector accumulation of the matter wave.With that we achieve a stateof-the-art sensitivity of 2.30(8)×10^(-26) N/√Hz.Long-term stabilities on the order of 10^(-28) N are observed in the two spatial components of a force,which allows probing atomic Van der Waals forces at one millimeter distance.As a further illustrative application,we use our atomic sensor to calibrate the control precision of an alternating electromagnetic force applied in the experiment.Future developments of this method hold promise for delivering unprecedented atom-based quantum force sensing technologies.展开更多
文摘荷兰物理学家范德瓦尔斯(van der Waals,Johannes Diederik,1837—1923)(邮票V3a和V3b)1837年11月23日生于莱顿,他虽于1862年进入莱顿大学,但他主要还是靠自学成才。1873年他的论文《论液态和气态的连续性》首次引起人们的广泛注意,并因此获得了博士学位,为他一生的研究定下了基调。1877年,他被任命为阿姆斯特丹大学物理学教授,在那里干了30年才退休。
基金partially supported by the Gordon and Betty Moore Foundation (J. B. P.)the Royal Commission for the Exhibition of 1851 (R. Z.)+2 种基金the Leverhulme Trust (Y. L. and J. B. P.)the MOE Ac RF Tier 2 (Y. L.)the Program Grant (11235150003) from NTU-A*STAR Silicon Technologies Centre of Excellence (Y. L.)
文摘The van der Waals force originates from the electromagnetic interaction between quantum fluctuationinduced charges. It is a ubiquitous but subtle force which plays an important role and has a wide range of applications in surface related phenomena like adhesion, friction,and colloidal stability. Calculating the van der Waals force between closely spaced metallic nanoparticles is very challenging due to the strong concentration of electromagnetic fields at the nanometric gap. Especially, at such a small length scale, the macroscopic description of the dielectric properties no longer suffices. The diffuse nonlocal nature of the induced surface electrons which are smeared out near the boundary has to be considered. Here,we review the recent progress on using three-dimensional transformation optics to study the van der Waals forces between closely spaced nanostructures. Through mapping a seemingly asymmetric system to a more symmetric counterpart, transformation optics enables us to look into the behavior of van der Waals forces at extreme length scales,where the effect of nonlocality is found to dramatically weaken the van der Waals interactions.
基金supported by the National Program on Key Basic Research Project of China (2018YFA0305601, 2021YFA07183012021YFA1400900)+4 种基金the National Natural Science Foundation of China (61727819, 11934002, and 11874073)Shanghai Municipal Science and Technology Major Project (2019SHZDZCX01)the Chinese Academy of Sciences Priority Research Program(XDB35020100)the Science and Technology Major Project of Shanxi (202101030201022)the Space Application System of China Manned Space Program
文摘High-precision sensing of vectorial forces has broad impact on both fundamental research and technological applications such as the examination of vacuum fluctuations and the detection of surface roughness of nanostructures.Recent years have witnessed much progress on sensing alternating electromagnetic forces for the rapidly advancing quantum technology-orders of magnitude improvement has been accomplished on the detection sensitivity with atomic sensors,whereas such high-precision measurements for static electromagnetic forces have rarely been demonstrated.Here,based on quantum atomic matter waves confined by a two-dimensional optical lattice,we perform precision measurement of static electromagnetic forces by imaging coherent wave mechanics in the reciprocal space.The lattice confinement causes a decoupling between real-space and reciprocal dynamics,and provides a rigid coordinate frame for calibrating the wavevector accumulation of the matter wave.With that we achieve a stateof-the-art sensitivity of 2.30(8)×10^(-26) N/√Hz.Long-term stabilities on the order of 10^(-28) N are observed in the two spatial components of a force,which allows probing atomic Van der Waals forces at one millimeter distance.As a further illustrative application,we use our atomic sensor to calibrate the control precision of an alternating electromagnetic force applied in the experiment.Future developments of this method hold promise for delivering unprecedented atom-based quantum force sensing technologies.